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Abstract
Since the 1974 Safe Drinking Water Act, the US has spent $2 trillion to provide
safe drinking water, yet 10–20 percent of drinking water violates standards. We
study trends, causes, and consequences of US drinking water pollution. The anal-
ysis uses 230 million readings on 1,800 pollutants over decades that we obtained
from 48 states via dozens of Freedom of Information Act and associated requests.
We link pollution geographically to administrative Medicare data on older Ameri-
cans’ health outcomes. Three findings emerge. First, US drinking water pollution
is declining rapidly. The share of readings exceeding current health standards, for
example, fell by half from 2003–2019. Unregulated pollutants declined more slowly.
Low-income areas have higher pollution; patterns for Black and Hispanic communi-
ties are more complex. Second, loans provided by the Safe Drinking Water Act to
cities substantially reduce pollution. These loans could eliminate pollution above
health standards for $36 annually per person. Third, these loans significantly re-
duce mortality rates of older Americans, at a cost of $124,000 per premature death
avoided. Although fiscal federalism cautions against federal funding of local pub-
lic goods with few inter-jurisdictional externalities like drinking water, we estimate
enormous net benefits from Safe Drinking Water Act loans.
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1 Introduction

The 1974 US Safe Drinking Water Act was established to “protect the nation’s drinking
water from harmful biological and chemical contaminants” (Frederick 1995). This paper
describes national trends in drinking water pollution, estimates contributions of the Safe
Drinking Water Act to those trends, and assesses the resulting social welfare consequences
and incidence.

Safe drinking water has long been essential to human health. Snow (1855) helped found
modern epidemiology and the use of natural experiments by linking contaminated drinking
water to cholera in London. Municipal water filtration and disinfection around 1900 dra-
matically decreased mortality (Cutler and Miller 2005; Anderson, Charles and Rees 2021).

US drinking water, however, remains a threat to health. In a typical year, ten to twenty
percent of Americans drink water that violates the Safe Drinking Water Act (USEPA 2009;
Allaire, Wu and Lall 2018). The Centers for Disease Control and Prevention (CDC) estimate
that just one category of drinking water pollution, pathogens, causes 7 million cases of illness
and 600,000 emergency department visits a year, though this likely understates the disease
burden (APHA 2019; Collier et al. 2021). US industry uses over 33,000 chemicals, many
with potential toxicity, but the Safe Drinking Water Act regulates only 90 (USEPA 2019).
In every Gallup poll since 1990, Americans have rated drinking water pollution as their
top environmental concern (Gallup 2018). Drinking water disasters in Flint, Michigan,
and Jackson, Mississippi, have galvanized attention to environmental inequality, the Biden
Administration’s top environmental policy priority alongside climate change.

The Safe Drinking Water Act has been controversial, however, for two reasons. First
is whether it has decreased pollution. No prior analysis has estimated national trends in
drinking water pollution concentrations. Many sources analyze drinking water violations
reported to the Environmental Protection Agency (EPA), but the EPA and independent
researchers have described these data as “very low” quality (USEPA 2000; Bennear and
Olmstead 2008; Allaire, Wu and Lall 2018; Josset et al. 2019). Limitations of federally-
reported violations data include incomplete and nonrandom reporting, changes in pollution
standards, binary measures that may miss changes that occur above or below standards,
no information on unregulated pollutants, and governments’ potential to strategically and
precisely manipulate pollution measurement to avoid federal violations (Bennear, Jessoe and
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Olmstead 2009; Auffhammer and Kellogg 2011; Zou 2021). For example, one influential study
finds that federally-reported Safe Drinking Water Act violations doubled between 1982 and
2015 (Allaire, Wu and Lall 2018). This finding could reflect an increase in drinking water
pollution, a tightening of drinking water standards, or an increase in violation reporting.

The second controversy is whether the drinking water investments’ health benefits exceed
their costs. Between 1970 and 2014, public and private sources spent around $2 trillion
(in 2017 dollars) to provide clean drinking water (Keiser and Shapiro 2019a). The 2021
infrastructure bill allocates $83 billion for clean water (Farr 2021). The American Society of
Civil Engineers (2020) calculates that typical spending on US water infrastructure is short of
needs required for Safe Drinking Water Act compliance by a factor of three. Between 1998
and 2018, household drinking water bills rose at three times overall inflation, in part due
to improving drinking water quality (AWWA 2023). Some households have drinking water
connections shut off due to unpaid bills (Miller and Causey 2018; Feinstein, Shimabuku and
Pierce 2020).

Models of fiscal federalism imply that optimal federal policy would have little involvement
in drinking water policy. Oates (2001) described drinking water as “a purely local public
good. . . . Both the benefits and also the costs of drinking water standards accrue almost
wholly to residents.” Drinking water pollution, unlike air, river, or lake pollution, has few if
any inter-jurisdictional externalities.1

To help resolve these debates, we use the most comprehensive records ever compiled
on drinking water pollution, including several datasets never previously used in research.
This provides the first national description of the pollution in most Americans’ drinking
water. By submitting dozens of Freedom of Information Act requests, open record requests,
and similar inquiries, along with scraping state websites and corresponding with staff from
state agencies, we obtained all available data on drinking water pollution concentrations.
These data provide 230 million drinking water pollution readings, covering 1,840 different
pollutants for 48 states over several decades. We link these to new service territory maps
for every available state describing the areas where each drinking water system distributes
water. Such maps are important because the US has about 150,000 public water systems—

1The famous case of Chicago reversing the direction of the Chicago River around 1900 to obtain cleaner
drinking water is renowned because it is unprecedented. Another iconic but unusual case is New York City
protecting its watershed in the Hudson Valley and Catskill Mountains, which naturally filters source water,
rather than building a more sophisticated treatment plant.
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50 systems per county, on average—of which a third are “community water systems” serving
permanent residences. These maps let us link measures of drinking water quality to the
demographics of areas served and health outcomes.

Using this information, we match the drinking water data to confidential Medicare ad-
ministrative data on the health outcomes of all beneficiaries, by zip code. These data cover
the near-universe of US adults age 65 and older. Finally, through a federal Freedom of In-
formation Act request, we obtained details on 9,200 subsidized loans to local drinking water
systems through the Safe Drinking Water Act.

We have three main findings. First, drinking water pollution declined sharply between
2003 and 2019—the share of readings exceeding current health standards fell by half. Sparser
data from before 2003 and standardized values (Z scores×100) also indicate declines. Ra-
dioactive particles (“radionuclides”) declined the fastest, while organic chemicals like pes-
ticides had low levels in baseline data and flatter trends.2 We find modest declines for
pollutants that the Act does not regulate. Poor communities have higher pollution lev-
els; we obtain mixed evidence on relative pollution levels and trends in Black and Hispanic
communities.

Second, we find that loans to public drinking water systems through the Safe Drinking
Water Act contribute to the decline in water pollution. We report difference-in-differences
regressions comparing drinking water pollution concentrations before versus after a system
receives a loan, in systems receiving loans in early versus late years, including estimates ac-
counting for treatment in different years (Gardner 2021; Borusyak, Jaravel and Spiess 2022).
A Safe Drinking Water loan decreases the share of waters violating health standards by 10
percent and moderately decreases standardized values. Loans that identify a specifically
targeted pollutant decrease the share of concentrations of that pollutant above health stan-
dards by 40%. Cost-effectiveness analysis indicates that through these loans, it would cost
the average drinking water system $2.6 million annually ($2019), or $36 per person×year,
to eliminate readings of regulated pollutants above health standards.

Third, administrative Medicare data indicate that Safe Drinking Water Act loans reduce
mortality among older Americans. The average loan decreases mortality rates by half a
percent relative to baseline levels, implying a cost of $124,000 per premature death avoided.

2Confusingly, “organic food” refers to food produced without pesticides, while “organic chemicals” in
science refers to pesticides and other chemicals containing carbon. This paper uses the scientific definition
of “organic” as denoting carbon-based molecules, including pesticides and industrial chemicals.
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An age-adjusted estimate of the value of a statistical life implies that these loans have a
measured benefit/cost ratio of 19.6. We also estimate a cost of $26,000 per year of life saved
due to these loans. The lifetime net benefits of all loans newly provided under the Act each
year total $92 billion. These statistics only include benefits due to preventing premature
mortality for individuals aged 65 and older. We informally discuss other possible benefits,
including health benefits for people under age 65, avoided bottled water and home filter
spending, and others, which would yield total benefits larger than we estimate.

In addition to event study graphs, which help assess the extent to which treatment and
control communities have parallel trends prior to loan receipt, several additional pieces of evi-
dence support the research design’s internal validity and help rule out concern about possible
omitted variables bias. First, for loans targeting specific pollutants ex ante, we study effects
on targeted versus other pollutants. Second, we control for important potential confounding
variables, including Clean Water Act investments, Clean Air Act nonattainment regula-
tions, toxic pollution sources, local income and unemployment, opioid prevalence, health
insurance coverage, other federal investments, and baseline federally-reported violations in-
teracted with year fixed effects. Third, we examine whether the health benefits of loans
are concentrated among households drinking piped water rather than well water. Fourth,
we report falsification tests of the effects of loans on ambient air, river, and lake pollution.
Finally, we report synthetic difference-in-differences estimates that effectively match systems
on pre-loan trends (Arkhangelsky et al. 2021).

This paper departs from existing research in several ways. It provides the first compre-
hensive estimate of trends in US drinking water pollution concentrations. This is useful in its
own right and because microdata on environmental goods enable macro assessment of their
importance (Muller, Mendelsohn and Nordhaus 2011). For example, the Biden Administra-
tion recently began adding environmental statistics to the US National Accounts, a process
which other countries have already undertaken (DePillis 2023; White House January 2023).
The US strategy plans to add surface water pollution and groundwater depletion, among
other environmental goods, to the US national accounts by 2028; our work could facilitate the
inclusion of drinking water pollution. Existing studies measure trends in violations reported
to a federal database, not concentrations, and for subsets of systems (Pennino, Compton and
Leibowitz 2017; Allaire, Wu and Lall 2018; McDonald and Jones 2018). Publicly posting
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our microdata may spur future research on drinking water pollution.3

Additionally, we provide the first estimate of how Safe Drinking Water Act investments
affect drinking water pollution concentrations and the first ex post evaluation of Safe Drink-
ing Water Act loans. Prior work measures how specific features of the Safe Drinking Water
Act affect certain outcomes. For example, time series data show that blood arsenic levels
declined after the Safe Drinking Water Act regulated arsenic; mandatory letters to customers
highlighting drinking water violations decreased federally-reported violations; and drinking
water systems use testing frequency strategically to avoid federally-reported violations (Ben-
near and Olmstead 2008; Bennear, Jessoe and Olmstead 2009; Grooms 2016; Nigra et al.
2017). Several policy papers discuss cost and management of the loans we study, though not
their impacts (Beecher and Shanaghan 1998; Pontius 1998; Mullin and Daley 2017). Study-
ing loans’ equity has been difficult in existing work because observing the demographics of
drinking water systems requires knowing the communities they serve.

Our work builds on recent economic analyses of major US environmental laws (Greenstone
2002; Behrer et al. 2021; Shapiro 2022; Taylor and Druckenmiller 2022). Our work differs
from research on the Clean Water Act (Keiser and Shapiro 2019b) in several ways. We study
a different law, regulating a different environmental good (the tap water people drink, not
the rivers where people swim or fish), regulating drinking water treatment, not wastewater
treatment, and analyzing health outcomes rather than property values. Pollution levels in
rivers and lakes may relate only loosely to pollution levels in drinking water because drinking
water systems treat surface water before people drink it, and because a majority of drinking
water systems draw water from underground aquifers.

We also provide the first direct ex post estimate of how Safe Drinking Water Act invest-
ments affect health outcomes. Most economic analysis of water pollution and health focuses
on earlier decades (Alsan and Goldin 2019; Flynn and Marcus 2021), on developing countries
(Kremer et al. 2011; Greenstone and Hanna 2014; Dias, Rocha and Soares 2023), on births
and infants (Currie et al. 2013; Hill 2018; Hill and Ma 2022), or on bottled water spending
(Graff Zivin, Neidell and Schlenker 2011; Christensen, Keiser and Lade 2023), and largely
does not directly analyze the impact of Safe Drinking Water Act interventions on health
outcomes. We focus on older Americans for a few reasons—they are especially prone to hos-

3An environmental advocacy organization, the Environmental Working Group, has collected drinking
water data from states, but the data cover one decade, the data processing is not public, and the microdata
are not freely available. No data used in this paper come from the Environmental Working Group.
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pitalization and premature death from drinking contaminated water (Schwartz, Levin and
Goldstein 2000; Beaudeau, Schwartz and Levin 2014; Cotruvo 2019); much existing work
focuses on infants or bottled water spending; nationally-consistent zip code level data on
health outcomes are available from Medicare, whereas zip-code level data on infants or the
health of people under age 65 are typically only available for a few states; and Americans
over age 65 account for three-fourths all US deaths (Xu et al. 2021).

Finally, we contribute to work on environmental inequality by providing the first na-
tional analysis of how drinking water pollution concentrations vary by demographics, and
of the equality of Safe Drinking Water loans’ distribution and impacts. The Environmental
Justice movement is motivated in part by the concern that minority and low-income com-
munities face higher pollution levels. Commentators often highlight prominent case studies
for drinking water, such as in Flint, Michigan, but systematic drinking water evidence is
not available (Banzhaf, Ma and Timmins 2019). Several studies correlate federally-reported
violations with county-level demographics (e.g., McDonald and Jones 2018; Schaider et al.
2019). Pace et al. (2022) compare concentrations of three drinking water pollutants across
demographic groups in California. Partly inspired by these concerns, many laws proposed
in Congress, though not passed, would mandate targeting for Safe Drinking Water loans
(Tiemann 2018).

The paper proceeds as follows. Section 2 provides background. Section 3 describes data.
Section 4 discusses econometrics. Section 5 discusses pollution levels and trends. Section 6
discusses loans and pollution. Section 7 discusses health. Section 8 concludes.

2 Background

2.1 Drinking Water, Pollution, and Treatment Technologies

Explaining drinking water systems, pollution, and treatment provides useful background.
Appendix A discusses details.

We first explain how drinking water reaches households. Ninety percent of US housing
units receive drinking water from public water systems, which are primarily what we study.
The other ten percent of housing units, largely in rural areas, receive drinking water from
private domestic wells, which we do not analyze since they lack drinking water regulation
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and our data do not cover them.
Public water systems include several components. Intake pipes draw in untreated surface

or ground water. Drinking water treatment plants then remove pollution from untreated
water. Distribution pipes convey treated water to households and businesses. Storage facili-
ties (e.g., water towers) help maintain water pressure and provide water during emergencies.
Loans may fund any of these, though they most often fund treatment plants.

We next explain the types of pollution that occur in drinking water systems and how
these pollutants affect health. We organize pollutants into five categories—microorganisms,
disinfection byproducts, inorganic chemicals, organic chemicals, and radionuclides. Microor-
ganisms originate in human and animal wastes. Filtration and disinfection decrease their
prevalence. Microorganisms like Cryptosporidium and Giardia Lamblia have a shell that
resists traditional disinfection. Systems monitor total coliforms to proxy for all microorgan-
isms. Using chlorine disinfection to kill microorganisms creates harmful compounds called
disinfection byproducts, which result from interactions of disinfectants with natural materials
like leaf particles.

Inorganic chemicals are molecules that do not contain carbon, which are generally el-
ements of the periodic table. Three are of particular concern: arsenic, lead, and nitrate.
Arsenic originates from natural deposits, lead stems from old household pipes, and nitrate
often derives from fertilizer runoff.

Organic chemicals like pesticides and industrial solvents come from agricultural runoff or
factory discharges. Radionuclides are radioactive particles that arise from natural deposits
or nuclear power.

Research has linked acute or chronic drinking water pollution exposure to many health
problems, including gastrointestinal illness, kidney and liver disease, cardiovascular disease,
stroke, diabetes, and cancers (Morris 1995; Meliker et al. 2007; Navas-Acien et al. 2008;
Lisabeth et al. 2010; D’Ippoliti et al. 2015; Cotruvo 2019; USEPA 2018). Due in part to
the limited availability of drinking water concentration data, however, we know less about
the health impacts of drinking water pollution than air pollution or extreme temperature
exposure.

Finally, we explain how public water systems treat these pollutants. General treatment
often begins by adding benign chemicals to untreated water, which causes suspended pol-
lution particles to agglomerate. Treatment plants then allow solids to settle and filters
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remove remaining particles. Disinfectants kill many remaining microorganisms. Corrosion
inhibitors prevent leaching of chemicals like lead from pipes. Finally, pressurizing water in
distribution pipes prevents inflow of pollutants through the distribution network. Public
water systems thus use both general technologies like filters that affect many of these pol-
lutants, and specific technologies like corrosion inhibitors that primarily affect one category
of pollution (inorganic chemicals like lead and copper in pipes). Our subsequent discussions
of how specific interventions affect different pollutants to some extent reflect whether the
interventions support general or specific technologies.

2.2 The Safe Drinking Water Act

Congress passed the 1974 Safe Drinking Water Act in response to evidence of high pollution
levels in US drinking water. The Act’s structure guides our analysis; Appendix A.3 provides
further background. The Act determined health standards (“Maximum Contaminant Lev-
els”) for regulated pollutants. States may add tighter standards, though we only analyze
federal standards. Current standards cover about 90 pollutants.

Violations of standards are common but cause limited enforcement. The Act requires
large systems to notify customers of violations; requiring notifications decreases pollution
(Bennear and Olmstead 2008). Systematic violations could increase citizen pressure. Some
standards are complex, which may let engineers optimize to avoid formal violations.4

The Safe Drinking Water Act also requires monitoring. Larger systems must monitor
more frequently and high routine readings can require follow-up tests. Most monitoring
occurs at treatment plants, though most lead monitoring is at household taps.

The 1996 Safe Drinking Water Act Amendments created the Drinking Water State Re-
volving Loan Fund, which provides subsidized loans to address the “most serious risks to
human health” (Tiemann 2018). Loans allocate capital to states based on demonstrated
needs. Each state allocates loans according to priority lists describing projects that ad-
dress the most serious health risks, help ensure compliance, and support systems most in
need. Loans fund capital investments; local governments pay operations and monitoring
costs (USEPA 2017).

4For example, the disinfection byproducts standard applies to the mean within a sampling location of a
treatment plant over four quarters. A system that exceeds the standard at different monitoring locations in
different quarters has no formal violation.
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3 Data

3.1 Drinking Water Data

We obtain all available drinking water data from states via Freedom of Information Act and
similar requests, correspondence with government staff, and web scraping; Appendix B.1
provides details. We harmonize these data across states. In most data, an observation
represents one pollution reading.

Analysis requires choosing years, summary statistics, and pollutants. We analyze trends
over the 17-year period from 2003–2019. Sample coverage is limited before 2003, though
sensitivity analyses include earlier years. We analyze loans over the period 2009–2019 since
the EPA began collecting loan records in 2009 and our Medicare data end in 2019.

Our main estimates use two summary statistics: the share of pollution readings exceed-
ing current health standards and standardized values (Z scores defined within pollutant ×
100). We multiply Z scores by 100 to increase the readability of smaller numbers. Sensitivity
analyses consider pollution bins, logs, and the share that are positive. Several data charac-
teristics guide these choices. Over half of pollution readings are zero. Positive readings have
skewed distributions. Pollutants have different units and unregulated pollutants lack health
standards. We analyze current, time-invariant health standards so results reflect changes in
pollution rather than changes in standards, though standards largely did not change in our
analysis period.

We emphasize three broad groups of pollutants: pollutants with health standards, “pri-
ority” pollutants that Safe Drinking Water loans target, and pollutants without health stan-
dards (Appendix Figure 1).5 We also highlight six important individual pollutants: arsenic,
lead, nitrate, total coliforms, trihalomethanes, and uranium.

We take several steps to address potential sample imbalance and representativeness. Most
regressions include system-by-pollutant fixed effects. We restrict some estimates to system-
pollutant pairs present for most years. We also emphasize results for the regulated pollu-
tants that are the most widely measured. We further exclude readings with flags identifying

5We define priority drinking water pollutants as those that some Safe Drinking Water loans target,
have health standards, and routine monitoring. This definition identifies 11 priority pollutants: several
disinfection byproducts (bromate, chlorite, haloacetic acids, and trihalomethanes); two inorganic chemicals
(arsenic and nitrate); one microorganism (total coliforms); and four radionuclides (gross alpha, gross beta,
radium 226+228, and uranium).
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repeated or special-purpose readings. We report some results weighted by population. Addi-
tionally, we average readings to the system×month then system×year level, which decreases
excess influence from repeated monitoring of high pollution levels. Finally, many results give
equal weight to each of the five categories of pollution. We make this choice of weighting
to address differential composition of data across pollution categories. For example, organic
chemicals have low levels but many chemicals and observations.

Summary Statistics: Pollution

Appendix Table 1 shows that these data represent systems serving over 300 million Amer-
icans. Larger states have more data. The mean state monitors 250 pollutants. Most state
data begin by the year 2000, some in 1980, and most end between 2019 and 2022.

Appendix Table 2a describes groups of pollutants. Over half the readings represent
regulated pollutants. A majority of readings are zero, partly because organic chemicals
usually have a value of zero. The number of annual readings grows over time. Community
water systems account for 87 percent of pollution readings. The mean pollutant has four
readings per system×year and the mean system has 16 years of data.

Correlations between pollutants in Appendix Table 3 show sensible patterns. Disinfec-
tants create disinfection byproducts, so they occur together. Organic and inorganic chemi-
cals have a modest positive association, perhaps because nearby factories contribute to both.
“Secondary” pollutants, which affect water’s taste or appearance but do not primarily affect
health, are correlated with pollutants which affect health. Thus, water which tastes or looks
bad is more likely to be unhealthy.

3.2 Who Does Each Drinking Water System Serve?

We obtain information on the exact area each drinking water system serves from the US
Community Water Systems Service Boundaries v3.0.0, a dataset that the Environmental
Policy Innovation Center (EPIC) created in November 2022. EPIC works with state gov-
ernments to create and document electronic maps describing precisely where each system
distributes water.6 Prior research has obtained similar information for California, New Jer-

6Before that release, we had directly obtained or reconstructed these records for most of these states. We
found that EPIC’s records are extremely similar for states when we both obtained data, but EPIC obtained
modestly broader coverage than our direct records.
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sey, or Pennsylvania, though has not used national maps (Currie et al. 2013; Hill and Ma
2022; Pace et al. 2022). These data are relevant for our health and inequality estimates
only, and our estimates of pollution trends or loans’ effects on pollution do not use these
data. EPIC identifies a system’s distribution territory by using state-specific service territory
shapefiles, matching a system name with a municipality name then using Census maps of
municipal boundaries, or drawing a circle around the centroid of a drinking water system.
Our main analysis excludes the third method (circles drawn around system centroids) due to
its potential inaccuracy, though sensitivity analyses include it. We link the service territory
of each system to demographic and health outcomes by identifying Census blocks where each
system distributes water. Blocks are the smallest unit of geography the Census identifies.

Our main geographic data cover 79 percent of Americans with piped water. Sensitivity
analyses adding EPIC’s third method (circles drawn around service territory centroids),
cover more Americans. Figure 1, Panel B, shows that these data cover most people in
most counties. The South and mid-Atlantic have less coverage, though sensitivity analyses
including EPIC’s third method cover more of these areas.

3.3 Medicare and Other Data

We use individual-level Medicare administrative records on all beneficiaries from years 2009–
2019, covering almost all Americans aged 65 to 100, accessed through the National Bureau
of Economic Research. We use two file segments. The first contains patient demographics,
including zip code of residence and date of death, though our data do not report cause
of death.7 The second describes patients’ health care utilization, including the number of
inpatient hospital stays. The first segment covers all beneficiaries; the second covers the
roughly 70% of beneficiaries in traditional fee-for-service Medicare.

We use several other public datasets. The EPA’s Safe Drinking Water Information Sys-
tem reports system names, population, and other characteristics. Many environmental and
economic data, described in Appendix B.2, provide time-varying controls. The 2010 Census
provides block and block group population and demographics. Murray et al. (2021) counts
housing units by block group with piped water versus private domestic wells.

7We use “zip code” to denote five-digit zip code tabulation areas. These have similar boundaries to zip
codes but are standardized nationally by the Census Bureau.
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3.4 Safe Drinking Water Act Loans

Through a federal Freedom of Information Act request, we obtain detailed information on
Safe Drinking Water loans. The EPA collected these data systemically beginning in 2009,
though some records cover earlier years. We analyze 9,200 loans, collectively worth $32
billion (Appendix Table 4). The mean loan provides $3 million and funds a water system
serving 74,000 people. Both statistics have a long right tail. In the mean year, 750 loans are
given, with more in 2009 due to the American Recovery and Reinvestment Act, hence some
of our estimates control for unemployment, income per capita, and government transfers.
Most counties have received loans (Figure 1, Panel A). Loans are less common in the South,
where private wells are more common.

We can identify the pollutant a loan targets for 11 percent of loans, either from a variable
listing the targeted pollutant or from free entry text (Appendix Table 4). The 11 percent
are evenly divided across the five groups of pollutants. Essentially no loans target inorganic
chemicals other than arsenic and nitrate, or organic chemicals.

Appendix Table 5 describes characteristics of systems receiving loans. Systems serv-
ing large populations and with a higher share of readings violating health standards in the
year 2006 receive more loans. Black, Hispanic, and low-income communities also receive
more loans, which is important for debates about Environmental Justice and loan targeting.
Column (7) shows that conditional on population served, Black communities receive fewer
loans. In other words, Black communities receive more loans in part because they are dispro-
portionately in cities and densely populated areas. Controlling for population density also
somewhat decreases the relative number of loans that Hispanic and low-income communities
receive.

4 Empirical Framework

4.1 Trends

We use the following equation to estimate pollution trends:

Pcsy = αyy + X
′

csyπ + µcs + εcsy (1)
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The dependent variable P represents the mean pollution level for pollutant (chemical) c in
drinking water system s and year y. It measures the share of (c, s, y) readings above the
health standard or their mean standardized value. The coefficient α represents the mean
annual trend in drinking water pollution. The fixed effects µcs adjust for the mean level
of each pollutant and drinking water system, and so imply that equation (1) estimates
trends within a system and pollutant. The controls X include the share of readings from
each calendar month, which address seasonality in drinking water pollution, with July as
the reference category. The error term εcsy includes other forces affecting drinking water
pollution. Regressions in the paper are clustered by drinking water system.

We use the following equation to graph national pollution trends:

Pcsy =
2019∑

τ=2003
ατ 1[yy = τ ] + X

′

csyπ + µcs + εcsy (2)

We plot the year-specific coefficients α2003, . . . , α2019 plus the constant, evaluated at a refer-
ence category of µcs.

4.2 Effects of Safe Drinking Water Loans on Pollution

We use the following equation to estimate how Safe Drinking Water loans affect pollution:

Pcsy = βLsy + X
′

csyπ + µcs + µgy + +µcy + εcsy (3)

We compare pollution P before versus after a loan, across systems receiving loans in differ-
ent years. The main explanatory variable is the cumulative number of loans Lsy received
through year y. The parameter β represents the mean effect of a loan on pollution. We
measure the number of loans rather than loan dollars because a large share of loan values
are zero (representing system×year observations with no loans) and the rest are approxi-
mately lognormal, and since loan values vary with system size and pollution. The controls
Xcsy include the share of readings from each month and, in some specifications, the other
controls like nonattainment designations, unemployment, etc. The fixed effects µcs account
for different mean pollution levels in each drinking water system×pollutant. The geographic
state-by-year fixed effects µgy account for different pollution levels over time and space and
any time-varying state-specific characteristics of data collection. The pollutant×year fixed
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effects µcy allow for differential national trends by chemical.
Equation (3) provides an unbiased estimate of β if loans are orthogonal to the error term,

conditional on the other independent variables:

E[Lsyεcsy|Xcsy, µcs, µgy, µcy] = 0

We assess this assumption in several ways. First, we use the following equation to plot event
study graphs of pollution relative to the year when a drinking water system receives a loan:

Pcsy =
τ=10∑
τ=−9

βτ 1[Ls,y+τ = 1] + X
′

csyπ + µcs + µgy + µcy + εcsy (4)

Here τ represents event time, i.e., years since a system receive a loan, with τ = −1 as the
reference period.8 Equation (4) includes all drinking water systems; those never receiving
a loan have event time indicators 1[Ls,y+τ = 1] equal to zero in all time periods. To ease
interpretation and limit variability, graphs group event time into two-year bins. We report
alternative versions of these graphs using heterogeneous difference-in-difference estimates
(Gardner 2021; Borusyak, Jaravel and Spiess 2022), which account for treatment in different
years, and synthetic differences-in-difference estimates (Arkhangelsky et al. 2021), which
construct weighted combination of control water systems to match treatment systems on
pollution pre-trends.

Engineering predictions guide our expectations on impact timing. After loan receipt,
completing construction can take 1–5 years. Engineers estimate that capital investments
cleaning up wastewater last for 15–55 years (Keiser and Shapiro 2019b).

A second test of internal validity is that for loans that target a specific pollutant, we
assess how loans affect targeted versus other pollutants:

Pcsy = βT Lc′sy1[c′ = c] + βNT Lc′sy1[c′ ̸= c] + X
′

csyπ + µcs + µgy + µcy + εcsy (5)

Here Lc′sy represents the cumulative number of loans that target pollutant c′. The coefficient
βT represents the mean effect of a loan on the pollutant that the loan targets. The coefficient
βNT represents the mean effect of a loan on other pollutants. For example, for loans targeting

8We include systems that receive no loans, one loan, or multiple loans. Since no reference category
is required here, to ease interpretation, we vertically center graphs so the coefficient for the year before
treatment (τ = −1) is zero.
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arsenic (c′ = arsenic), this tests how these loans affect arsenic versus other pollutants.
Finding a larger value of βT than βNT suggests loans effectively target pollutants and provide
some evidence against omitted variables bias. If pollution control technologies are general
and affect many pollutants, however, we could find βNT ̸= 0.

4.3 Effects of Safe Drinking Water Loans on Health

We use the following equation to assess how Safe Drinking Water loans affect health:

lnHzy = γLzy + W
′

zyπ + µz + µgy + εgy (6)

Here z represents a five-digit zip code and Lzy is cumulative Safe Drinking Water loans for
people aged 65 and older in z. We calculate Lzy as the population-weighted mean across
systems serving z. The dependent variable lnHzy represents the log annual deaths or hospital
admissions per 10,000 Medicare beneficiaries. We specify the dependent variable in logs since
it is approximately lognormally distributed and rarely zero. The zip code fixed effects µz

imply that equation (6) exploits variation within zip codes and over time. The time-varying
geographic fixed effects µgy imply this equation also exploits variation across zip codes within
a state and year. The controls Wzy include nonattainment designations, unemployment, etc.
Some estimates are weighted by the over-65 population in each zip code, which efficiently
addresses heteroskedasticity and estimates effects for the mean person rather than the mean
zip code.

We also estimate event study graphs for health:

lnHzy =
τ=10∑
τ=−9

γτ 1[Lz,y+τ = 1] + W
′

zyβ + µz + µgy + εzy (7)

Cumulative or chronic health effects could take longer than the 3–4 year construction period
to appear. In general, pollution may respond more quickly to loans than health does, though
acute health impacts of water pollution could track pollution concentrations. As with the
pollution event study graph, we report heterogeneous difference-in-difference and synthetic
difference-in-difference versions of these estimates.

Appendix C.4 discusses the use of loans as an instrument to estimate the concentration-
response function between drinking water pollution and older adult mortality. As discussed
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in that appendix, we interpret these carefully given the setting.

5 Results: Drinking Water Pollution Levels and Trends

5.1 Levels

We begin by describing spatial patterns in US drinking water pollution. Figure 1, Panel C,
shows pollution levels by county, measured as the share of drinking water exceeding health
standards. The map includes regulated pollutants and partials out pollutant fixed effects to
adjust for potential sampling differences.9 The map reveals enormous variation across states.
For example, Kentucky and Oklahoma have high pollution levels while Florida and Oregon
have low levels. It also reveals large variation across counties within a state. Large metro
areas like Los Angeles and Chicago, for example, have low pollution. This contrasts with air
pollution, where urban areas have higher levels. The map also shows spatial clustering, which
occurs partly since drinking water systems serve adjacent counties and since determinants
of drinking water pollution are spatially correlated.

Appendix Figure 3 shows maps for each pollution category. Many spatial patterns are
intuitive. In Panel A, disinfection byproducts are highest east of the 100th meridian, where
greater precipitation levels produce more organic materials in water like leaf litter and thus
more disinfection byproducts. In Panel B, natural arsenic deposits increase inorganic chem-
icals in Nevada, and nitrate fertilizer use increases inorganic chemicals in some Midwestern
agricultural areas.

We next describe pollution sources and their associations with specific pollutants. These
associations help explain patterns in the maps, give independent evidence on the quality of
the drinking water microdata, and presage some demographic patterns of pollution shown
below. We examine several types of pollution which have available data on sources. Appendix
Table 6 finds that these associations are positive and many have large magnitudes. For
example, counties with arsenic deposits for mining have an additional six percentage points
of drinking water violating arsenic standards, or a 170% increase relative to the sample mean.

Finally, we show how drinking water pollution varies by population characteristics. Table
9Because pollutants have different probabilities of exceeding health standards, we adjust for pollutant

fixed effects to ensure that the map shows differences in exceedance rates within pollutants, rather than
differences in the probability that a given county measures a given pollutant.
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1 regresses the share of pollution above health standards on system demographics, which
provides a simple way to measure inequality. Columns (5) through (7) also control for log
population served and Panel B adds state fixed effects. Column (1) finds that systems
serving larger populations have modestly lower pollution, echoing the low pollution levels for
cities from the maps. The semi-elasticity of the share of pollution violating standards with
respect to log population is -0.08. Mean violation rates are around 2.5 percentage points, so
doubling population would represent a 3 percent pollution decrease relative to the sample
mean. Larger systems have better water quality partly because the Safe Drinking Water Act
imposes tighter standards on larger systems and because drinking water pollution abatement
has increasing returns to scale.

Table 1, column (2), shows that Black communities have lower overall pollution than
other communities. The sign is surprising, though the magnitude of 0.11, or a 4 percent
lower than the baseline mean, is not especially large. Columns (3) and (4) show that low-
income communities have significantly higher pollution, while Hispanic communities do not.
Conditional on population served, Black and non-Black communities have more similar pol-
lution levels.

Sensitivity analyses in Appendix Table 7 show that the higher overall pollution in low-
income communities is robust, but patterns for Black and Hispanic communities are not.
Overall, all these estimates do reject the hypothesis of dramatically and systematically higher
levels of all pollutants in Black communities. Panel A adds the drinking water systems with
less accurate boundaries (EPIC’s third methodology that approximates system territory as a
circle drawn around the system territory centroid). Black communities in this estimate have
lower pollution, although the difference is statistically insignificant. In Panel A, low-income
communities have much higher pollution than high-income communities. Panels B through
F consider each category of pollution separately. Patterns differ somewhat by pollutant.
Disinfection byproducts are lower in Black communities, though adding population controls
in column (5) suggests again that this is primarily because Black communities are more
often in cities and have higher population density. Inorganic chemicals are much higher in
Hispanic communities, perhaps in part due to agricultural nitrate fertilizers. Microorganisms
have high concentrations in Black communities, which is important since microorganisms are
the most longstanding and challenging drinking water health problem. Organic chemicals
rarely exceed standards anywhere.
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5.2 Trends

We first document national trends in overall drinking water pollution, estimated using equa-
tion (2). Figure 2 shows that the share of drinking water pollution above standards fell by
half in 2003–2019, from 2.6 percent to 1.3 percent. The decline is steady throughout the
period. The confidence regions are tight, reflecting the large sample. The figure shows small
variability around the trend, though a gradually slowing trend in later years.

Table 2 reports corresponding regressions, using equation (1). Panel A, column (1), shows
that over a decade, drinking water becomes 1.1 percentage point less likely to violate health
standards. Because only 2.9 percent of pollution readings violate standards in the initial
year 2003, this represents a rapid decline.10 This trend estimate is precise, with a t statistic
above 45. Columns (2) and (3) compare priority pollutants to others. Priority pollutants
have higher baseline pollution levels than other pollutants and decline faster. We do not
interpret the difference between priority and non-priority pollutants as representing causal
effects of Safe Drinking Water loans, which focus on priority pollutants, because rapid trends
for priority pollutants could represent other forces.

Table 2, Panel B, describes trends in standardized values. Estimates in columns (1)
through (3) qualitatively corroborate estimates from Panel A. We find precise downward
trends for all pollutants with health standards, which are more rapid for priority pollutants.
The magnitude of trends in standardized values, however, is modest. This occurs because
readings from the right tail of pollution readings are becoming less common, but the moderate
values which account for most of the pollution distribution are not.

Appendix Figure 4 shows this change in the distribution of pollution directly. This
figure summarizes regressions where the dependent variables are the share of health readings
falling into each of a set of bins, defined relative to the health standard. For example, the
dot furthest to the right in the figure shows a trend regression where the dependent variable
is the share of readings for a system×year where pollution exceeds 200 percent of the health
standard for that pollutant. We estimate a separate regression for each bin and estimate a
linear trend as in equation (1). We plot the coefficient divided by the sample mean, which
can be interpreted as a percent change for each bin.

Appendix Figure 4 shows that the share of readings that are less than 75 percent of health
10This statistic is slightly above the corresponding share from Figure 2, Panel A, because there we use

the residuals plus the constant after partialling out system×pollutant fixed effects and month seasonality.
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standards has grown, while the share of readings that are more than 75 percent of the health
standard has fallen. Readings that are more than 175 percent of the health standard have
declined the most rapidly. To the extent that these standards identify levels of pollution
which affect human health, our estimates suggest that these trends could reflect important
positive impacts on human health.

We now turn to examine trends in unregulated pollutants. This analysis uses stan-
dardized values rather than readings exceeding health standards, which are undefined for
regulated pollutants. Table 2, Panel B, column (4) shows a downward trend in unregulated
pollutants that is just over half the trend for regulated pollutants, from column (1), and is
statistically significant. The unregulated pollutant sample covers more pollutants and has
fewer readings per pollutant. We emphasize two aspects of unregulated pollutants. States
regulate some of these other pollutants even though the Safe Drinking Water Act does not.
Additionally, other forces could affect unregulated pollutants, such as cleaner source waters.

Appendix Table 8 presents many alternative specifications, which mostly show qualita-
tively similar results; Appendix C.1 discusses details. These include alternative summary
statistics for pollution, a longer sample window, and alternative sample selection rules and
weighting. Several sensitivity analyses for organic chemicals and nitrates are flatter and
somewhat sensitive to these alternatives, so we interpret trends for these pollutants more
cautiously.

Finally, Appendix Table 9 shows trends by demographic group. Pollution is declining
slightly faster in Black, Hispanic, and low-income communities. These patterns become
smaller and less precise when allowing differential trends by population density, in columns
(5) through (7), or adding the broader but less precise system service territory maps, in
Panel C.

6 Results: Safe Drinking Water Loans and Pollution

This section analyzes how Safe Drinking Water loans affect overall pollution, specific pol-
lutants, and demographic groups. The event study in Figure 3 analyzes the effect of Safe
Drinking Water loans on the percent of readings exceeding health standards, as in equa-
tion (4). The blue solid line shows point estimates and the dashed red lines show the 95
percent confidence interval.
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Figure 3 shows that loans cause large and sustained decreases in pollution. Each loan
decreases the share of pollution above standards by nearly half a percentage point, which
is an important decline relative to the baseline rate. In years before a loan, pollution has
similar trends in treatment and comparison systems. After a loan, pollution declines, with
sensible timing. Pollution changes little in the year of a loan, declines over the next two to
five years, and the decline persists through 10 years. This is in line with, though on the early
side of, engineering predictions that wastewater treatment construction projects take two to
ten years to complete (Keiser and Shapiro 2019b).

Table 3 shows corresponding regressions, estimated using equation (3). Panel A finds that
each loan decreases the share of water that violates standards nearly a third of a percentage
point, or a 10 percent decrease relative to the sample mean violation rate of 3.1 percentage
points. For the priority pollutants which loans generally target, column (2) finds that loans
decrease the share of readings above standards by half a percentage point. Loans decrease
priority more than other pollutants because priority pollutants have higher baseline levels
and because loans target priority pollutants.

Loan impacts differ by pollutant. Table 3, columns (3) through (7), shows that loans
substantially decrease disinfection byproducts, microorganisms, and radionuclides. Loans
cause small decreases in inorganic chemicals and no changes in organic chemicals, partly
since organic chemicals hardly ever exceed standards. Panel B shows that a typical loan
decreases standardized values by only a small amount, though the estimates are precise.
As we discuss below, the smaller impact for standardized values than readings above health
standards reflects loans’ large impact on the right tail of the pollution distribution but smaller
impact elsewhere.

Table 3, Panels C and D, analyzes the 11 percent of loans which identify the specific
pollutant a loan targets, following equation (5). We find that a targeted loan primarily and
substantially decreases the pollutant it targets. Columns (1) and (2) show that a targeted
loan eliminates 40% of violating readings of a targeted pollutant. Columns (3) through (7)
show similar patterns across categories of targeted pollution.11 Panel D shows qualitatively
similar results using standardized values.

11For microorganisms, we do not find a pollution decrease due to loans, and even find a marginally
significant small positive estimate. Microorganism loans target Cryptosporidium and Legionella, which are
difficult to monitor routinely and involve different treatment technologies than total coliforms, which are the
microorganism that is typically monitored.
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Sensitivity analyses obtain qualitatively similar patterns, including estimates allowing
for different treatment years, synthetic difference-in-differences estimates, semi-parametric
bin estimates across the distribution of pollution, and others; Appendix Table 10 presents
and Appendix C.2 discusses details. We do not find significantly different impacts of loans
on pollution between Black, Hispanic, or low-income communities; Appendix C.5 discusses
details.

Appendix Table 11 reports a falsification test of how Safe Drinking Water loans affect air
and surface water pollution. Because Safe Drinking Water loans target drinking water treat-
ment, they are unlikely to meaningfully affect pollution in other media.12 We estimate regres-
sions analogous to equation (3). Each observation represents a a pollutant×monitor×year,
which we link to the population-weighted cumulative number of loans for each county×year.
Columns (7) and (8) show effects on two common surface water pollution indices (Keiser
and Shapiro 2019a). We find no meaningful effects of drinking water loans on air or surface
water pollution. The point estimates are small and centered near zero. A few border on
statistical significance but have small magnitudes and positive signs (the opposite sign of
the loan’s impact on drinking water pollution).

6.1 Cost Effectiveness of Safe Drinking Water Loans

Cost effectiveness equals the cost that a loan project requires to reduce pollution by one
unit. Equivalently, it represents the cost of supplying environmental quality through Safe
Drinking Water loans. Cost effectiveness can help choose policies that maximize environ-
mental benefit for given cost, or equivalently, that minimize the cost of achieving a given
environmental outcome. We can also compare cost-effectiveness against estimates of the
demand for drinking water quality to obtain benefit/cost and social welfare calculations.

Cost-effectiveness and benefit/cost calculations require assumptions about how a dollar
of loans affects municipal capital spending, i.e., the extent of crowd-out or pass-through.
Appendix C.6 discusses regressions of the log of cumulative municipal capital water invest-
ment on cumulative Safe Drinking Water loan amounts, estimated using municipal balance

12In principle, because drinking water systems draw in surface or ground water, treat it, and then the
used water is returned to surface waters, drinking water treatment’s impact on surface water quality is
formally ambiguous. In practice, used drinking water accounts for a small share of total surface water, and
most surface water pollution comes from household, commercial, and agricultural wastes, so drinking water
treatment is unlikely to affect surface water pollution directly.
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sheets from the 2009–2019 Census and Annual Survey of Governments. That Appendix es-
timates that a dollar of loans leads to $0.78 (0.25) additional spending on municipal water
capital, which fails to reject complete pass-through (no crowd-out), though the point esti-
mate would likely imply 20 percent crowd out. Our cost-effectiveness calculations assume
complete pass-through, though we discuss alternative assumptions.

Table 4 reports cost-effectiveness estimates. Column (1) describes aggregate values across
a loan’s lifetime, which we assume is 25 years, following engineering and econometric evidence
for similar materials (Keiser and Shapiro 2019b). Column (2) provides per-year values. Panel
A describes costs. Panel B summarizes environmental impacts from Table 3. Panels C
through E describe the cost per unit of environmental impact.

Table 4, Panel A, shows that the mean loan provides $3.4 million in capital spending.
Over a loan’s lifetime, operations and maintenance costs almost equal capital costs. Thus,
the mean loan costs $6.6 million over its lifetime, or $260,000 annually.

Table 4, Panel C, reports the cost to decrease pollution through Safe Drinking Water
loans. Row 8 shows that it would cost the mean drinking water system $2.6 million annually
to eliminate readings of all pollutants above health standards. Row 10 shows qthat it would
cost $36 annually per person to eliminate pollution levels above health standards. Row 12
calculates that using these Safe Drinking Water loans, it would cost $11 billion annually to
eliminate all pollution readings above health standards nationally. Costs to decrease drinking
water pollution by one standard deviation are much higher, since loans predominantly affect
the right tail of the pollution distribution.

Comparisons help provide a benchmark for these statistics. The average annual US water
bill is $185 per person (Bluefield Research 2023; US Census Bureau 2023). Thus, using Safe
Drinking Water Act loans to eliminate pollution above standards would increase water bills
by 19 percent. Surface water pollution provides another comparison. Using Clean Water Act
grants to wastewater treatment plants, it costs $1.5 million annually to make one river-mile
safe for fishing (Keiser and Shapiro 2019b). Table 4 indicates that it costs 70 percent more
($2.6 million) to make the average drinking water system eliminate pollution above health
standards.

The cost-effectiveness statistics in Table 4 require important caveats. They assume each
loan has linear and additive effect on pollution. This contrasts with the typical assumption
in environmental economics that the marginal cost of abating pollution grows with the
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amount of pollution reduced. Cost effectiveness numbers scale with the pass-through rate.
For example, if Safe Drinking Water loans had a pass-through rate of 50% to municipal
capital spending on water, then total costs of a loan project would be 50% lower (since both
capital and operations and maintenance costs would be lower). The cost to decrease a unit
of pollution would then be half of the values listed in Table 4, i.e., the loans would be more
cost-effective than we estimate.

7 Effects of Safe Drinking Water Loans on Health

Figure 4 shows an event study graph of how Safe Drinking Water loans affect the log mortality
rate of older Americans, as in equation (7). The horizontal axis describes the years since
a drinking water system receives a loan. The vertical axis describes the log mortality rate,
with the period before loans normalized to the value zero.

Figure 4 shows that Safe Drinking Water loans cause large mortality declines. Before
a loan, log mortality rates have parallel trends between recipient and other communities.
After a loan, mortality rates steadily decrease in years 0 to 3, decrease faster in years 4
to 5, and still faster in years 6 to 9. The decrease in log mortality rates is 0.005 in most
periods, though somewhat more in the final period. This timing of mortality impacts in
Figure 4 somewhat echoes the timing of pollution impacts in Figure 3. The decline in
pollution is somewhat abrupt, reflecting the completion of construction after a few years,
and the decline in mortality is more gradual. Mortality timing may reflect chronic and
acute illness, plus cumulative effects of pollution exposure. Appendix Figure 6 shows similar
patterns using a heterogeneous difference-in-differences and synthetic difference-in-differences
estimator; Appendix C.3 discusses details.

Table 5 shows regression analogs, as in equation (6). Panel A describes unweighted re-
gressions. Panel B weights estimates by the zip code’s Medicare population. Column (1)
shows a basic estimate with zip code fixed effects and state×year fixed effects. Column
(2) adds potential confounding variables, including other environmental policies, local eco-
nomic conditions, and other forces influencing health. Column (3) restricts the sample to
system×years with drinking water data. Column (4) expands the sample to years 1992–2019.

Table 5, column (1), shows that the mean loan decreases the mortality rate in a zip
code×year by about half a percent. The unweighted point estimate in Panel A exceeds the
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population-weighted point estimate in Panel B. Column (2) shows extremely similar effects
upon controlling for potential confounding variables, which provides one piece of evidence
that such omitted variables do not drive the health results. Systems with drinking water
data and the larger time window, in columns (3) and (4), also obtain similar estimates. For
the mean system, these estimates imply that each loan presents 2.3 annual deaths per 10,000
population, or 2.1 annual deaths given that the mean system serves 9,300 older Americans.
We are unaware of comparable estimates for the older American mortality impact of drinking
water pollution to provide a basis for comparison.

Appendix Table 12, columns (5) through (8), examines the inequality of loan effects by de-
mographic group. These estimates interact the cumulative loan variable L from equation (6)
with indicators for whether a community is Black, Hispanic, or poor. These estimates find
that loans have statistically indistinguishable effects on health in Black, Hispanic, and poor
communities. While point estimates suggest that loans provide smaller health benefits in
Black, Hispanic, and poor communities, most of the interactions are somewhat imprecise.

Appendix Table 13 reports sensitivity analyses, including interactions with piped versus
well water, loans focused on specific pollutants, and a dose-response estimate for the cumu-
lative number of loans, which generally provide qualitatively similar results. Appendix C.3
discusses details.

Appendix Table 14 reports the impact of Safe Drinking Water loans on the log Medicare
hospital admission rate, with specification corresponding to equation (6). The main estimate
in Panel A, column (1), is close to the corresponding mortality estimate from Table 5, though
less precise. Most estimates in Appendix Table 14 are negative but have wide confidence
intervals. Hospitalizations, unlike mortality, can depend more on economic conditions, and
some other environmental analyses similarly find precise decreases in mortality but less clear
changes in hospitalizations (e.g., Deschenes, Greenstone and Shapiro 2018).

Appendix C.4 discusses results from using loans as an instrumental variable to estimate
the semi-elasticity of the log mortality rate of older adults with respect to drinking water
pollution. We estimate a large concentration-response function. As that appendix discusses,
we interpret these results cautiously due to the multi-dimensional nature of pollution and
targeting of loans.
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7.1 Benefits and Costs

Table 6 finds that these loans generate large benefits relative to their costs. Most entries
in that table report values for the mean loan. Several rows report numbers summed over
all loans. Panel A summarizes inputs from earlier in the paper. As in the cost-effectiveness
analysis, we assume that loan benefits last 25 years.

Table 6, Panel C, aggregates health benefits over a loan’s lifetime. Row 9 shows that
the mean loan prevents 53 premature deaths over its lifetime. Row 10 uses an age-adjusted
value of a statistical life to find that the willingness-to-pay for avoided premature mortality
is $129 million per loan. Numbers weighted by population and using the EPA’s value of a
statistical life are larger. Given the population of older Americans we study, our discussion
focuses on the age-adjusted value of a statistical life.

Table 6, Panel F, compares measured benefits and costs of these loans. As discussed
below, loans create some benefits this paper does not measure. Row 19 shows our central
estimate that loans have a benefit/cost ratio of 19.6. Alternative estimates using the EPA’s
value of a statistical life, or weighted by population, are larger, and would indicate substantial
positive net benefits from these investments.

Given uncertainty over the value of a statistical life, we also describe the loans’ cost per
premature death avoided, or per life-year saved. These statistics compare mortality against
loan project cost, without incorporating the value of a statistical life. Table 6, row 21, shows
that through these loans, it costs $124,000 to prevent one premature death. This is far below
leading estimates of the value of a statistical life, which is another way of concluding that
these loans have large net benefits. Row 23 finds that loans cost $26,000 per life-year saved.
Row 24 finds total lifetime net benefits from all 750 loans newly provided in the mean year
of $92 billion.

Save Drinking Water loans have high estimated returns relative to other environmental
and health investments, though our estimates are in line with some other drinking water
numbers. In the mid-1990s, the average medical intervention cost $68,000 per life-year
saved (Tengs et al. 1995).13 Safe Drinking Water loans, at cost of $26,000 per life-year
saved, are thus more cost-effective. Our estimated benefit/cost ratio is in the range of some
EPA estimates for some drinking water regulations (Cadmus Group 2003), though the EPA
estimates the mean recent drinking water regulation to have a lower benefit/cost ratio of

13We deflate monetary values in this section to 2019 dollars using the GDP deflator.
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8.3. Our estimated benefit/cost ratio of 19.6 exceeds the ratio of 12.4 the EPA estimates for
the mean recent air pollution regulation, though again is in the range of some higher-return
air pollution policies. Our estimate far exceeds the benefit/cost ratio of 0.6 that the EPA
reports for the average recent surface water quality regulation (i.e., river and lake pollution;
see Keiser and Shapiro 2019a). Our estimate of the cost per life×year saved of $26,000
substantially exceeds Cutler and Miller (2005)’s corresponding estimate of $670 for drinking
water filtration and disinfection in the early twentieth century. This indicates that drinking
water treatment was more cost effective in the early 1900s than today, likely in part because
the earlier time period involved more basic treatment.

Safe Drinking Water loans may create benefits beyond the mortality declines for older
Americans that we measure. The costs of adaptation to drinking water pollution would
increase benefit/cost ratios of drinking water quality (Graff Zivin, Neidell and Schlenker
2011; Deschenes, Greenstone and Shapiro 2018; Ito and Zhang 2020; Christensen, Keiser
and Lade 2023; Carleton et al. 2022). For example, many Americans use drinking water
filters, including Brita-style pitcher or refrigerator filters, or buy bottled water. While many
filters address taste rather than health, filter a limited set of pollutants, or filter a limited
amount of a given pollutant, our estimates are net of such adaptation—water pollution could
have larger health effects if no such adaptation existed. Loans’ mortality benefits likely dwarf
at least the bottled water spending they prevent. For example, total national US bottled
water spending in 2020 was $36 billion (IBWA 2023). Only a subset of this spending was
caused by tap water pollution. The estimated annual mortality benefits of Safe Drinking
Water loans in a typical year of $97 billion (Table 6, row 12) exceed all national bottled
water spending for all purposes.

Additionally, loans also likely create health benefits for people younger than 65, espe-
cially infants. Furthermore, loan benefits could also be capitalized into local housing values.
Because loan receipt is not always publicized, and because many loans address longstanding
pollution problems that are less salient than dramatic episodes like the lead crisis in Flint,
Michigan, we conjecture that awareness of drinking water quality improvements due to loans
is more limited than awareness of prominent drinking water disasters.

Finally, we note that the benefit/cost ratio covaries inversely with the pass-through rate.
For example, if each dollar of federal loans leads to only a half dollar of municipal water
spending, then the benefit/cost ratio of loans is double what we report. These funds represent
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loans that municipalities must repay, not grants where municipalities are only responsible
for a portion of costs. Thus, incomplete pass-through may be less likely in this setting than
others (see Appendix C.6).

8 Conclusion

The classic economic history of drinking water emphasizes Snow (1855)’s linking it to cholera
in the mid-nineteenth century and the beginning of municipal treatment in the early twen-
tieth century (Cutler and Miller 2005). This paper adds a modern chapter to this story—
drinking water pollution remains a costly problem, and while it has unequal prevalence
across social groups, its prevalence is declining. The Safe Drinking Water Act’s loans to
cities decrease pollution, and in total we estimate a 50 percent decline in the share of water
pollution exceeding health standards between 2003 and 2019. These loans substantially de-
crease mortality rates of older Americans and have high benefit/cost ratios. More broadly,
our compilation of the first national dataset of drinking water pollution concentrations linked
to Census blocks may open up additional opportunities to research drinking water pollution.

Our finding of large returns to Safe Drinking Water Act loans would support the addi-
tional funding for these loans in the 2021 infrastructure bill. Because loans target pollution
cases that systems and states judge to pose the most serious threats to human health, they
may represent marginal returns to drinking water investment, and we are cautious to ex-
trapolate our estimates to arbitrary drinking water policies. Nonetheless, our results do
suggest encouraging potential for other US drinking water investments to meaningfully in-
crease social welfare—if the marginal return to investment is high, the mean returns may be
reasonably positive as well.

We finish with a few broader conclusions. One compares these investments to other major
US environmental policies. As discussed earlier, the benefit/cost ratio we estimate for these
drinking water investments is similar to or higher than than typical ratios for Clean Air
Act regulations, and contrasts more with much smaller benefit/cost ratios for many Clean
Water Act investments in improving river and lake water quality (Keiser, Kling and Shapiro
2019). Prevented premature mortality benefits of drinking water and clean air, multiplied
by a large estimated value of a statistical life, account for these investments’ large estimated
net benefits. The measured benefits of Clean Water Act investments focus primarily on
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recreational (e.g., fishing and boating) rather than health benefits, and so their measured
benefit/cost ratios are accordingly lower. Of course, this paper’s results do give rise to the
question of how investments in cleaning up rivers and lakes affect drinking water quality and
health, which we leave for future work.

A second takeaway involves the analysis of fiscal federalism. The large net benefits we es-
timate from Safe Drinking Water loans challenge the prevailing idea that federal investment
in drinking water is inefficient because drinking water is a local public good. Various expla-
nations could account for this discrepancy. These drinking water investments would likely
have large benefit/cost ratios regardless of whether local or federal governments fund them.
Given the dearth of evidence on drinking water pollution concentrations and Safe Drinking
Water Act loans, federal and local governments likely have incomplete information about the
returns to these investments. Additionally, some drinking water systems and their customers
face credit constraints that make it difficult to fund the capital investments these drinking
water improvements require; these subsidized loans help relax those credit constraints.

A third broader point involves our lack of results for organic chemicals. At least since
Rachel Carson’s (1962) Silent Spring, public concern and policy has focused on pesticides,
industrial solvents, and other organic chemicals in drinking water. Organic chemicals account
for 55 of the 90 pollutants the Safe Drinking Water Act regulates and around 90 million of
our 230 million pollution readings. Yet we find that organic chemicals are the least likely of
all types of pollution to violate health standards, essentially no Safe Drinking Water loans
target them, and loans have a precisely-estimated zero effect on their concentrations. Thus,
our analysis does not provide a strong empirical basis for the focus on organic chemicals, at
least relative to other water pollutants.

Finally, much economic research focuses on regulated economic activity, in part because
regulation generates data and policies. While regulated activity is important, it may be
unrepresentative. Our finding that regulated pollutants are rapidly decreasing, but that
unregulated pollutants are decreasing much more slowly, highlights the general challenge
that regulated economic activity can provide an unrepresentative picture of all economic
activity.
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Panel A: Counties receiving Safe Drinking Water loans Panel B: Percent of Population Mapped

Panel C. Percent of water violating health standards, by county

Figure 1: Maps of Drinking Water Data

Notes: in Panel A, counties shaded in blue have a drinking water system that receives a loan. In Panel B, each county shows the ratio of population 
with drinking water distribution mapped divided by population with piped water. Panel C shows the share of pollution above health standards in years 
2009-2019. It partialls out pollutant fixed effects from system × pollutant × year data, then averages residuals plus the constant within each county. 
Averages weight the five categories of pollution equally and are proportional to population. Areas in white lack pollution data. 
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Figure 2: Trends in US Drinking Water Pollution

Figure 3: Effects of Safe Drinking Water Act Loans on Pollution

Notes: Dependent variable is the percent of readings for a system × pollutant × year above health standards. Sample includes 
years 2009-2019. Regressions include system × pollutant, pollutant × year, and state × year fixed effects and controls for the 
share of readings from each month. Regressions weight the five categories of pollution equally. Standard errors are clustered 
by drinking water system. 

Notes: graph shows percent of drinking water exceeding current health standards, years 2003-2019. Graph includes 
pollutants with health standards. Each observation is a drinking water system × pollutant × year. Regression includes drinking 
water system × pollutant fixed effects and controls for the share of readings from each month. Regressions weight the five 
categories of pollution equally. Standard errors are clustered by drinking water system. 
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Figure 4: Effects of Safe Drinking Water Loans on Log Mortality Rate

Notes: the dependent variable is the log number of deaths among Medicare beneficiaries per 10,000 
Medicare beneficiaries 65 and older in the zip code × year. Standard errors are clustered by drinking 
water system. 
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(1) (2) (3) (4) (5) (6) (7)
Panel A. No additional controls
Log population served -0.08*** — — — -0.08*** -0.09*** -0.09***

(0.02) — — — (0.02) (0.02) (0.02)
Above-median share Black — -0.11* — — 0.03 — —

— (0.06) — — (0.07) —
Above-median share Hispanic — — 0.07 — — 0.14** —

— — (0.06) — — (0.06) —
Above-median share Poor — — — 0.39*** — — 0.43***

— — — (0.06) — — (0.06)

Panel B. Include state fixed effects
Log population served -0.08*** — — — -0.08*** -0.08*** -0.09***

(0.02) — — — (0.02) (0.02) (0.02)
Above-median share Black — -0.17** — — -0.03 — —

— (0.08) — — (0.08) — —
Above-median share Hispanic — — -0.16** — — -0.06 —

— — (0.07) — — (0.07) —
Above-median share Poor — — — 0.32*** — — 0.36***

— — — (0.07) — — (0.07)

Month controls X X X X X X X
N 7,770,693 7,770,693 7,770,693 7,770,693 7,770,693 7,770,693 7,770,693

Table 1. Drinking Water Pollution Levels, by Demographics

Note: dependent variable is the percent of drinking water pollution readings above health standards. 
Each observation represents mean pollution for a drinking water system × pollutant × year. Regressions 
weight the five categories of pollution equally. Sample includes years 2003-2019. Sample includes 
systems with non-missing values of independent variables. Standard errors are clustered by drinking 
water system.  Asterisks are shown for difference and indicate p-value less than 0.01 (***), 0.05 (**), or 
0.10 (*).
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All Priority Non-Priority
(1) (2) (3) (4)

Panel A. Dependent variable: percent violating current health standards
Year -0.114*** -0.178*** -0.005*** —

(0.0025) (0.0039) (0.0002) —

Dep. var. mean, yr. 2003 2.91 4.61 0.18
Observations 18,172,145 3,678,875 14,493,270 —
N pollution readings 79,052,447 45,383,507 33,668,940 —

Panel B. Dependent variable: standardized value
Year -0.637*** -0.810*** -0.280*** -0.350**

(0.0142) (0.0217) (0.0063) (0.1372)

Dep. var. mean, yr. 2003 4.39 7.19 -0.33 0.47
Observations 18,302,776 3,678,875 14,493,270 11,427,311
N pollution readings 80,332,828 45,383,507 33,668,940 28,006,210

System × pollutant FE X X X X
Month controls X X X X

Pollutants with health standards
Unregulated

Notes: Each observation represents mean pollution for a drinking water system × pollutant × year. 
Regressions weight the five categories of pollution equally. Sample includes years 2003-2019. Month 
controls are the share of raw pollution readings from each month of the calendar year. Standardized 
values equal 100 times Z-score, calculated within each pollutant. In Appendix Figure 1, "unregulated" 
here corresponds to pollutants with no primary health standard, excluding secondary, general quality, 
and not relevant groups. Standard errors are clustered by drinking water system.  Asterisks indicate p-
value less than 0.01 (***), 0.05 (**), or 0.10 (*).

Table 2: US Drinking Water Pollution Trends
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Pollutants

Dis-
infection 

byproducts
Inorganic 
chemicals

Micro-
organisms

Organic 
chemicals

Radio-
nuclides

(1) (2) (3) (4) (5) (6) (7)
Panel A. All loans. Dependent variable: percent violating current standards
Loans -0.304*** -0.506*** -0.400*** -0.022 -0.212* 0.000 -0.769***

(0.064) (0.107) (0.108) (0.016) (0.115) (0.001) (0.296)
Depend. var. mean 3.05 4.82 4.45 0.76 1.56 0.01 6.92
Observations 12,123,195 2,479,101 562,388 3,117,976 943,854 7,378,552 120,417

Panel B. All loans. Dependent variable: standardized value
Loans -1.514*** -2.399*** -1.672*** -0.211 -0.163 -0.027 -3.680***

(0.314) (0.520) (0.640) (0.155) (0.549) (0.076) (1.194)
Depend. var. mean 9.05 15.64 25.35 -2.67 -12.61 -1.77 15.27
Observations 12,203,461 2,502,291 562,388 3,117,976 1,000,930 7,378,552 143,608

Panel C: Loans targeting one pollutant. Dependent variable: percent violating current standards
Targeted loans * -10.707*** -10.707*** -5.526*** -17.486*** 1.118* — -14.666***
 targeted pollutant (1.308) (1.299) (1.136) (2.163) (0.636) — (2.375)
Targeted loans * 0.268 0.659* 0.375 0.072 -0.118 — 1.061
 non-targeted pollutant (0.181) (0.377) (0.453) (0.069) (0.253) — (0.880)
Depend. var. mean 27.49 27.49 15.23 50.44 1.44 — 39.93
Observations 12,123,195 2,479,101 45,451 94,938 100,642 — 21,789

Panel D: Loans targeting one pollutant. Dependent variable: standardized value
Targeted loans * -42.432*** -41.671*** -24.741*** -60.659*** 8.644* — -51.350***
 targeted pollutant (6.301) (6.385) (5.726) (9.607) (4.862) — (11.506)
Targeted loans * 0.083 1.429 3.107 -0.442 0.855 — -0.858
 non-targeted pollutant (0.792) (1.724) (2.654) (0.806) (1.530) — (3.556)
Depend. var. mean 138.86 142.40 109.43 266.00 -12.81 — 174.63
Observations 12,123,195 2,502,291 562,388 3,117,976 1,000,930 — 143,608

Fixed effects:
  Pollutant × system X X X X X X X
  Pollutant × year X X X X X X X
  State × year X X X X X X X
Month controls X X X X X X X

Table 3: Effects of Safe Drinking Water Loans on Drinking Water Pollution 
Categories of pollution

Priority

All with 
health 

standard

Notes: Sample includes years 2009-2019. Loans variables are cumulative. An observation represents 
mean pollution for a drinking water system × pollutant × year. Depend. var. mean represents the mean 
of the dependent variable for systems receiving loans, in years before a loan is received. Regressions 
weight the five categories of pollution equally. Targeted in Panels C and D indicates that a loan targets 
the pollutant that an observation represents. For Panels C and D, Appendix Table 4 shows the share of 
loans targeting each pollutant. Standard errors clustered by drinking water system. Asterisks indicate p-
value less than 0.01 (***), 0.05 (**), 0.10 (*).
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Cost over loan lifetime Cost per year
(1) (2)

Panel A. Cost for mean loan ($million)
 1. Capital $3.38 $0.14
 2. Operation & maintenance $3.17 $0.13
 3. Total $6.55 $0.26

Panel B. Effectiveness of mean loan at reducing pollution
 4. Decrease in readings above standards (pct. points) 0.30 0.30
 5. Decrease in pollution (standardized value) 1.51 1.51

Panel C. Cost for mean loan to decrease pollution ($million / unit of pollution)
 6. One pct. point decrease in readings above standards $21.55 $0.86
 7. One unit decrease in pollution standardized value $4.33 $0.17
 8. Eliminate pollution readings above standards $65.8 $2.6
 9. Decrease pollution by one standard deviation $432.7 $17.3

Panel D. Cost per capita using loans to decrease pollution ($ / person)
 10. Eliminate pollution readings above standards $899.1 $36.0
 11. Decrease pollution by one standard deviation $5,909.8 $236.4

Panel E. National cost to decrease pollution ($billion)
 12. Eliminate readings above standards nationally $269.7 $10.8
 13. Decrease pollution by one standard deviation $1,772.9 $70.9

Table 4: Cost Effectiveness of Safe Drinking Water Loans

Note: capital costs equal loan amount. Annual operation & maintenance costs equal 3.75% of capital 
investment and loan benefits last 25 years, based on Keiser & Shapiro (2019b). Standardized value 
equals Z-score calculated within pollutant times 100. Costs, impacts, and population based on Table 4 
and Appendix Table 4. Persons in denominator of Panel D includes all ages, not only the population 
aged 65 and older. National costs in Panel E assume a national population receiving drinking water of 
300 million people. All dollars figures are in $2019, deflated using the GDP deflator. 
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(1) (2) (3) (4)
Panel A: Unweighted
Cumulative loans -0.0059*** -0.0053*** -0.0058*** -0.0044*

(0.0014) (0.0014) (0.0014) (0.0022)
Observations 259,254 257,681 232,334 653,903
Mortality rate mean 429.7 432.1 429.9 470.0

Panel B: Weighted by population
Cumulative loans -0.0023** -0.0019* -0.0021** -0.0034***

(0.0010) (0.0011) (0.0010) (0.0013)
Observations 259,254 257,681 232,334 653,903
Mortality rate mean 412.7 416.2 413.3 452.2

Fixed effects:
  Zip code X X X X
  State × year X X X X
County controls X
With drinking water data X
Years 1992-2019 X

Table 5: Effects of Drinking Water Loans on Log Mortality Rate

Notes: each observation is a zip code × year. Columns (1)-(3) include years 2009-2019. 
Mortality rate is deaths per 10,000 Medicare population. Dependent variable is log mortality 
rate. Main explanatory variable is the cumulative number of drinking water loans a system 
has received. County controls include cumulative Clean Water Act revolving fund loans; 
Clean Air Act nonattainment status for ozone and particulate matter; inverse hyperbolic sine 
of the number of Toxic Release Inventory plants; personal income per capita; 
unemployment rate; opioid dispensing rate per 100 people;  federally-reported violations in 
years 2006-2008 interacted with year fixed effects; percent of population with health 
insurance; inverse hyperbolic sine of federal assistance and contracts. "With drinking water 
data" restricts the sample to drinking water systems and years for which we have drinking 
water pollution microdata. Standard errors clustered by drinking water system. Asterisks 
denote p-value < 0.10 (*), <0.05 (**), <0.01 (***). 
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Panel A. Data inputs
 1. Impact of loan on log mortality rate -0.00525
 2. Mean annual mortality rate 432.1 
 3. Mean population per loan 9,298 
 4. Assumed duration of loan benefits (years) 25 
 5. Age-adjusted VSL ($mn) $2.4 
 6. EPA VSL ($mn) $10.95

Panel B. Benefits per loan×year
 7. Premature deaths prevented per 10,000 population 2.3
 8. Premature deaths prevented 2.1

Panel C. Benefits per loan, totalled across loan's lifetime
 9. Premature deaths prevented 52.7
 10. Benefits using age-adjusted VSL ($mn) $128.7 
 11. Benefits using EPA VSL ($mn) $577.4 

Panel D. Benefits of all loans provided in a typical year, totalled across loan's lifetime
 12. Benefits using age-adjusted VSL ($bn) $96.5 
 13. Benefits using EPA VSL ($bn) $433.1 

Panel E. Loan costs
 14. Federal loan amount ($million) $3.4
 15. Annual state+local operation & maintenance cost ($mn) $0.1
 16. Total state+local operation & maintenance cost ($mn) $3.2
 17. Total costs of a loan ($mn) $6.6
 18. Total costs of all loans provided in a typical year ($bn) $4.9

Panel F. Measured benefits versus costs
 19. Benefit/cost ratio of loans: age-adjusted VSL 19.6
 20. Benefit/cost ratio of loans: EPA VSL 88.1
 21. Cost per premature death avoided ($000s) $124
 22. Cost per life-year saved ($000s, all Medicare) $11
 23. Cost per life-year saved ($000s, death within one year) $26
 24. Total net benefits of all loans provided in a typical year: age-adjusted VSL ($bn) $92
 25. Total net benefits of all loans provided in a typical year: EPA VSL ($bn) $428

Table 6: Costs and Mortality Benefits of Safe Drinking Water Loans

Notes: VSL is value of a statistical life, mn are millions, bn are billions. Currency values are in 2019 
dollars, deflated using the GDP deflator. Population values refer to individuals aged 65 and older. 
Mortality rate is deaths per 10,000 population. EPA VSL is discussed in Carleton et al. (2022). Age-
adjusted VSL is deflated value from Deschenes, Greenstone, and Shapiro (2018), which is age-
adjusted from Ashenfelter and Greenstone (2004), using age adjustments from Murphy and Topel 
(2006, p. 888). Life-year saved statistics assume 11.36 years of life expectancy for mean Medicare 
beneficiary, and 4.80 for deaths within one year estimated using a Cox-Lasso model, from 
Deryugina et al. (2019), Figure 5. Loans provided in a typical year are from Appendix Table 4, 
column (1). Mortality impact is from Table 5, Panel A, column (2).
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A Background: Additional Details

A.1 US Public Water Systems

Section 2.1 of the main text contrasts public water systems and private wells. Formally, a
public water system “provides water for human consumption through pipes or other con-
structed conveyances to at least 15 service connections or serves an average of at least 25
people for at least 60 days a year” (USEPA 2023d). Local governments like town water
boards or local water districts own and operate most public water systems. A minority of
public water systems have private owners, like apartments or campgrounds.

A single public water system can have multiple treatment plants. We analyze systems
rather than individual treatment plants both because most data define a system as the unit
of observation and because one water system may mix water from multiple treatment plants
before the water reaches customers.

The EPA categorizes the roughly 150,000 US public water systems into three types.
About 50,000 are community water systems, which serve year-round housing units. About
80,000 are non-transient non-community water systems, which serve at least 25 of the same
people at least six months per year. This category includes schools, factories, offices, and
hospitals. About 20,000 are transient non-community water systems, which provide water to
places like gas stations or campgrounds where a person does not spend sustained amounts of
time (USEPA 2023d). Some public water systems procure water from other systems, which
does not directly affect our analysis.

Section 1 of the main text mentions rapid price increases for household water bills. These
increases reflect stricter requirements which mandate systems to spend more; shrinking pop-
ulations in some older cities like Detroit, which force drinking water systems to pay for
legacy fixed capital costs; and potentially increased pumping costs to lift groundwater from
depleted underground aquifers.

A.2 Drinking Water Pollution Categories and Measurement

Section 2.1 of the main text describes five categories of pollution that we analyze. We do not
focus on a possible sixth category, disinfectants, for several reasons. Disinfectants do not have
maximum contaminant level health standards, but instead Maximum Residual Disinfectant
Levels (MRDLs). Additionally, disinfectants rarely exceed MRDLs. Most health concerns
focus on disinfection byproducts, a byproduct of disinfectants we measure separately, and
microorganisms, a pollutant that disinfectants decrease, rather than disinfectants themselves.
Finally, disinfectants have relatively few observations.
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Section 3.1 of the main text describes reasons for the summary statistics we analyze;
here we mention a few others. The share of readings above standards focuses on the margin
where pollution is believed to affect health and is less sensitive to whether a reading is
coded as zero or at the minimum detection level, and thus also less sensitive to changes
in minimum detection levels over time and space. It relies on a binary classification that
can miss inframarginal changes, however, and is undefined for pollutants without health
standards. Standardized values allow interpretation in terms of common units (standard
deviations×100) and include pollutants without health standards, though do not directly
account for the large share of zeros, and may not focus on the most health-relevant part of
the pollution distribution. Bins can reveal nonlinear patterns and suggest strategic changes
in pollution. Because a majority of pollution readings are zero, taking the log of pollution
would exclude most of the sample, and the inverse hyperbolic sine is scale-dependent.

Section 1 of the main text notes limitations from analyzing federally-reported violations
rater than pollution concentrations. It is also worth noting some of the information that
violations data routinely record and that analysis of raw readings can miss. First, some
pollutants have treatment technique rather than concentration requirements. For example,
because it is prohibitively costly to test for each individual microorganism like Cryptosporid-
ium, systems must expose water to disinfectants with a certain concentration and duration.
Failure to use treatment technique might not produce elevated measured pollution concen-
trations but still violates the SDWA. Second, some systems fail to record specific pollutants
when the SDWA requires it. Such monitoring violations violate the Act, although they
by definition do not produce elevated pollution readings. Monitoring violations could in
general be inferred from raw pollution concentrations data by using information on timing,
frequency, and requirements of monitoring.

A.3 Safe Drinking Water Act Policies and Pollutants

This section discusses policies and pollutants under the Safe Drinking Water Act.

Safe Drinking Water Act Rules and Other Policies

Our measure of which readings exceed health standards primarily examines maximum con-
taminant level (MCL) standards, with some exceptions. Lead and copper have “action levels”
based on feasibility, rather than MCLs based on health (Pupovac August 13, 2016). Reg-
ulations for microorganisms, lead, and copper provide a binary indicator for whether more
than a specified percent of readings exceed a standard, which we formalize by measuring
the continuous share of readings exceeding the standard. The Safe Drinking Water Act also
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describes Maximum Contaminant Goals (MCLGs), which are not a standard and which we
do not analyze. MCLGs are the level of pollution below which regulators expect no health
risk, allowing for a margin of safety. MCLs are near MCLGs, but also consider costs and
available treatment technology. While we refer to MCLs as health standards, we note that
they reflect these cost and feasibility considerations in addition to health objectives.

The EPA implements also rules and other policies under the Safe Drinking Water Act.
In the period we study, these rules largely do not change the numerical standard for most
pollutants, but instead change monitoring or treatment requirements, or change the systems
that a rule covers (USEPA 2023b).

Several rules target pathogens. Surface water treatment rules, which apply to systems
using surface water or groundwater under the direct influence of surface water, increase
filtration and disinfection requirements in order treat pathogens including Legionella, Giardia
Lamblia, and Cryptosporidium. The 1989 Surface Water Treatment Rule requires surface
water systems to filter and disinfect water, and set health standards for viruses, bacteria,
and Giardia Lamblia. It also set treatment technique requirements. The 1998 Interim
Enhanced Surface Water Treatment Rule applied to surface water systems serving over 10,000
population. It set a treatment technique requirement for systems using filtration, required
watershed protection for systems without filtration, increased filtration requirements, and
required covers on new finished water reservoirs. The 2002 Long Term 1 Enhanced Surface
Water Treatment Rule set similar requirements but for smaller systems. The Long Term 2
Enhanced Surface Water Treatment Rule added Cryptosporidium treatment requirements to
some systems at high risk. The 2006 Ground Water Rule also targeted microorganisms. For
systems using groundwater, it required additional monitoring for systems with positive total
coliforms readings, and additional monitoring to ensure that installed treatment technology
could remove almost all viruses.

Separate rules target total coliforms. The 1990 Total Coliform Rule set a health standard
for total coliforms, which also applies to readings of fecal coliforms or E. coli. Positive samples
require additional testing and can result in a boil water notice. The Total Coliform rule also
increased monitoring requirements. The Revised Total Coliform Rule, which became effective
in 2016, set a health standard for E. coli, imposed a treatment technique requirement for
total coliform, and expanded requirements for non-community water systems. These rules
set a standard that no more than 5 percent of total coliform readings can exceed zero. We
interpret this rule as a health standard for an individual reading of zero.

Other rules regulate disinfectants and disinfection byproducts. The 1998 Stage 1 Dis-
infectants and Disinfection Byproducts rule applies to systems that use disinfectants. It
increased monitoring requirements for TTHM and HAA5. The Stage 2 Disinfectants and
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Disinfection Byproducts Rule applied the health standard to each monitoring site in a dis-
tribution system, and targets monitoring to where high levels of these pollutants are likely
to occur.

A few rules regulate other chemicals. The 2001 Arsenic Rule tightened the health stan-
dard for arsenic and increased monitoring requirements. This built on Phase II through
Phase V rules implemented in the early 1990s that regulated additional organic and inor-
ganic chemicals. The 1991 Lead and Copper Rule requires monitoring for lead and copper,
and then information and treatment actions if high lead concentrations are detected. The
EPA added modest revisions to the rule in 2000, 2004, and 2007, and then implemented a
more stringent Revised Lead and Copper Rule in 2021. Finally, the year 2000 Radionuclides
Rule increased radionuclides monitoring requirements and regulated uranium.

In addition to loans, standards, and rules, the Safe Drinking Water Act regulates pollution
around some water sources, including wells drilled for injecting fluids underground, and the
SDWA restricts development around drinking water source aquifers. Loans can support
investments for source water protection (USEPA 2023e). Apart from loans, the SDwA
leaves funding and enforcement largely to states (Tiemann 2018; USEPA 2022).

Safe Drinking Water Act Pollutants

The Safe Drinking Water Act has health standards for 88 to 97 pollutants. The Na-
tional Primary Drinking Water Regulations (USEPA 2009) list 88 contaminants. Three
are groups—HAA5 equals the total of five haloacetic acids, TTHM equals the total of four
trihalomethanes, and Radium 226+228 combines two. In addition, fecal coliforms and E.
coli are together considered one contaminant.

We exclude several pollutants from most analysis. We exclude fecal coliforms and E. coli,
since they are primarily monitored when readings detect total coliforms, which makes their
data unrepresentative. We also do not analyze acrylamide, Cryptosporidium, epichlorohy-
drin, enteric viruses, heterotrophic bacteria, Legionella, mercury, trichloroethylene, or enteric
viruses, for which we have little or no data, and in several cases where regulations stipulate
a treatment technique rather than a maximum contaminant level or action level. Most data
record gross beta in pCi/L, but the MCL is in mrem/year, and converting between these
units requires data on the underlying emitters which we do not typically have, so we also do
not analyze gross beta.

Several parts of the main text analyze unregulated pollutants. This set of unregulated
pollutants excludes components of TTHM, HAA5, and radium 226+228 measured individu-
ally, since they do not have individual regulations but are part of broader groups that have
health standards. It also excludes broader groups that include a regulated pollutant and
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others.
One ongoing dispute with the SDWA is the set of pollutants it covers. States can regulate

more pollutants than the EPA, and epidemiological research suggests health damages from
several unregulated pollutants. Additionally, EPA has a Contaminant Consideration List of
pollutants it seeks to understand better and may consider regulating in the future. Many
states monitor these pollutants, though they are not yet federally regulated. For example, a
controversy has arisen over per- and polyfluoroalkyl substances (PFAS), popularly known as
“forever chemicals,” which occur in many communities’ drinking water systems. The EPA
after much debate has recently chosen to regulate PFAS in drinking water.

This paper analyzes the SDWA, but it is informative to compare its pollutants against
those of the Clean Water Act. For example, one of the most important pollutants in rivers
and lakes for the Clean Water Act is dissolved oxygen. Oxygen is practically never measured
in drinking water. The difference is partly because the Clean Water Act protects fish and
other aquatic life, while the SDWA focuses directly on protecting human health.
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B Data: Details

B.1 Drinking Water Data

Our drinking water data sources vary by state. For 23 states, we gather data via the Freedom
of Information Act, open record request, direct request to government staff, or similar; and
for 25 states through web scraping or downloading.

Not all jurisdictions have data available on all pollutants. For example, Panel A of
Appendix Figure 3 shows that in addition to Arkansas and South Dakota, we lack data from
Tennessee and Minnesota on disinfection byproducts. Panel C shows that we lack data from
Tennessee on total coliforms. Massachusetts and California staff indicated they do not have
comprehensive electronic records of total coliforms data available. Additionally, for several
states we only have data on community water systems.

We impose several sample selection rules. We drop pollution readings that are negative,
which are rare. To exclude additional readings completed after a high initial reading, our
main analysis excludes readings identified as special purpose, repeat, or untreated, and we
report sensitivity analyses restricted to the readings identified as routine. Additionally, we
exclude readings identified as raw (i.e., untreated), which reflect pollution in the source water
rather than the treated water that households drink. In analyzing unregulated pollutants,
we exclude general water pollution measures where the relationship to health may not be
monotone. Some examples include alkalinity, hardness, temperature, and flow rate. We also
exclude chemicals with less than 1,000 observations each nationally.

In addition, we impose several data cleaning rules. We winsorize pollution readings at
the 99.5th percentile or two times the health standard, whichever is greater, and Z scores at
+/- 10. Although we define the mean and standard deviation for calculating Z scores with
data at the system×pollutant level in the full sample, standardized means in most tables
do not exactly equal zero due to weighting and analysis of sub-samples. Some zeros reflect
a true reading of zero, while others reflect a non-zero reading below a monitor’s minimum
accurately detectable level. For comparability, we treat all these values as zero.

In most of the unprocessed data, one observation represents a single pollution reading.
Some total coliform readings are recorded as the number of readings in a month that did not
detect total coliforms. We interpret these multiple total coliform readings in a system×month
as effectively separate observations.

Appendix Table 2a, columns (5) through (9), describes the five categories of pollution.
Organic chemicals have the second-largest sample but exceed standards the least. Reasons
for the low levels of organic chemicals are unclear and could include that treatment of these
chemicals has been effective; standards are set at somewhat high levels, making violations
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rare; and these chemicals may only reach high levels for a few systems. Radionuclides have
the least data.

Appendix Table 2b summarizes data on six important individual pollutants. We have
the most data on total coliforms. Arsenic is the most likely to violate standards, followed
by TTHM and uranium.

Appendix Figure 2 shows histograms describing the distributions of six pollutants. Our
data on total coliforms report binary measurements (any concentration detected versus
none). The other pollutants have skewed distributions, with over half of readings at or
near zero.

B.2 County×Year Controls

We obtain county×year control variables from many sources. Safe Drinking Water loans
and Clean Water Act loans are separate and affect different plants (wastewater treatment
versus drinking water plants). We do collect data on nearby Clean Water Act loans and
some estimates control for them. We filed a Freedom of Information Act request to the EPA
to obtain records of each loan provided for wastewater treatment as part of the Clean Water
State Revolving Fund, which in 1987 succeeded the Clean Water construction grants program
analyzed in Keiser and Shapiro (2019b). We count the cumulative number of wastewater
treatment loans provided for each county×year. We use the EPA’s Green Book to define
whether each county is in Clean Air Act nonattainment status for ozone or particulate
matter in each year. We define partial, whole, and all levels (moderate, severe, extreme,
etc.) of nonattainment as equivalent. In each county×year, we include a control for the
inverse hyperbolic sine of the number of active Toxic Release Inventory (TRI) plants. We
use the number of plants, rather than reported emissions, given challenges with accurate
TRI reporting (Currie et al. 2015); and we use the inverse hyperbolic sine given the large
number of zeros and then skewed distribution. Additionally, we count the total number
of drinking water violations reported to SDWIS in the years 2006-2008, and interact this
baseline violation count with year fixed effects, which may help adjust for mean reversion.

We also include several economic controls. We control for per capita personal income
from the Regional Economic Accounts of the Bureau of Economic Analysis, and we control
for the local unemployment rate. Additionally, we include two measures of federal assistance
and federal contracts, from USA Spending.

We include a few health controls. From the Centers for Disease Control, we use data
on the number of opioid prescriptions per 100 persons in each county×year. We also use
measures of the share of people who lack health insurance, from the Census Bureau’s Small
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Area Health Insurance Estimates program.

B.3 Other Data

We use a few additional general data sources. We use the EPA’s Safe Drinking Water
Information System to identify a public water system’s population served and other basic
characteristics. Appendix Table 11 correlates loans with air and water pollution data, using
air pollution data from the EPA’s Air Quality System and water pollution data from the
Water Quality Portal.

Appendix Table 6 combines several datasets in order to correlate drinking water pollution
with its source causes. Column (1) uses our drinking water microdata, and averages mean
total organic carbon in mg/L within each county, pooling years 2003-2019. Disinfection
byproducts form when disinfectants like chlorine interact with organic material in source
waters. Columns (2) and (7) use data from the Mineral Resources Data System of the
US Geological Survey on whether the primary minerals in any mineral property in a given
county include arsenic or uranium. Column (3) uses state data on the number of lead service
lines per 100,000 population compiled by the Natural Resources Defense Council (NRDC).
Column (4) uses estimates of the pounds of nitrogen from fertilizer and manure in each
county in the year 2012, from the US Department of Agriculture, divided by county area,
which are likely to affect nitrate in drinking water. Column (5) counts the total pounds of
release of regulated chemicals to water by plants reporting in the Toxic Release Inventory,
and calculate the log of these releases per mile of county area. Column (6) measures the log
of the total kilograms of regulated pesticides used in a county in the year 2010, retrieved
from the US Geological Survey Pesticide National Synthesis project, divided by county area.
We average the high and low pesticide estimates.
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C Results: Sensitivity and Additional Analyses
C.1 Trends
Appendix Table 8 shows sensitivity analyses for estimates of trends in drinking water pollu-
tion, corresponding to equation (1). Except where otherwise noted, the dependent variable
is the share of readings in a system×pollutant×year that exceed health standards. Row (1)
includes all regulated pollutants and weights equally across the five categories of pollution.
Columns (2) through (7) show the five categories of regulated pollution, limited to pollu-
tants with health standards. Columns (7) through (9) show three pollutants of particular
interest—arsenic, lead, and nitrate. Columns (10) and (11) show standardized values for
regulated and for non-regulated pollutants.

Appendix Table 8 rows have the following structure. Row 1 re-states the main estimates
from Table 2, Panel A. In row 2, the dependent variable is the standardized value (Z score
times 100). Row 3 restricts the sample to only community water systems. Row 4 limits the
sample to system×pollutant pairs present in at least 12 years of the 2003-2019 window. Row
5 expands the sample to the period from 1992 to 2019. Row 6 weights each observation by
the population a drinking water system serves. Row 7 does not weight equally across the
five different types of pollution.

Rows 8-12 of Appendix Table 8 use the unaggregated data, so that an observation repre-
sents an individual reading of a specific pollutant, system, date, and time. Row 8 estimates
the main results at this unit of observation. Row 9 adds untreated source water to the
sample. Row 10 includes fixed effects for each system×pollutant×location within a drink-
ing water system (e.g., some systems might monitor pollution at 20 different locations, and
have a sample point identification code for each of the 20). Row 11 specifies the dependent
variable as the log of the raw pollution reading. Row 12 specifies the dependent variable as
an indicator for being strictly positive.

Almost all of these Appendix Table 8 estimates show that regulated drinking water
pollutants are declining, and most have similar magnitude to the main estimates. One
interesting pattern here is that several estimates for nitrates obtain positive signs, indicating
that the trend estimate for nitrates is not robust, while estimates for other pollutants are
more systematically negative. Notably, estimates of national trends in nitrogen pollution
concentrations in rivers and lakes are also somewhat flat (Keiser and Shapiro 2019b), and
increasing nitrogen fertilizer use for agriculture is one typical explanation. In the time
period we study, US corn acreage expanded, partly driven by policy incentives for corn-
based ethanol, and corn intensively uses nitrogen fertilizer. Row 7 shows that trends not
weighted across pollutants are flatter, which in part occurs because organic chemicals have
large samples and fairly flat trends.
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C.2 Effects of Safe Drinking Water Loans on Drinking Water Pol-
lution

Appendix Table 10 shows sensitivity analyses of how Safe Drinking Water loans affect drink-
ing water pollution. Each row describes a different specification; each column describes a
different set of pollutants. Row 1 repeats the main estimates from Table 3. Row 1, column
(10) shows that drinking water loans substantially decrease standardized values of regu-
lated pollutants; the point estimate in column (11) shows that loans somewhat decrease
non-regulated pollutants, though the point estimate is not statistically distinguishable from
zero.

Rows 2 through 7 of Appendix Table 10 show impacts of Safe Drinking Water loans
using other specifications and samples. In row 2, the dependent variable is the standardized
value rather than the percent of readings above standards. Row 3 restricts the sample to
community water systems, and Row 4 restricts the sample to system×pollutants present in
at least eight years of the sample. Row 5 expands the time window to begin in the year
1992. Row 6 weights the sample by the population each drinking water system serves. Row
7 does not apply weights across pollutants.

Rows 8 through 12 use the non-aggregated microdata, so an observation represents an
individual water pollution reading on a particular site and day. Row 8 provides the basic
estimate at this level of disaggregation. Row 9 adds in data on untreated water data to the
sample. Row 10 adds fixed effects for each sample point. Row 11 uses the log of pollution
as the dependent variable, which excludes observations with zero pollution. Row 12 uses an
indicator for positive pollution as the dependent variable.

Rows 1-12 use sensitivity analyses that we also use for estimating trends in Appendix
Table 8, while Rows 13-15 incorporate other alternatives specific to loans. Row 13 adds the
various county×year and associated controls for the Clean Air Act, Clean Water Act, etc.
Row 14 uses as an explanatory variable whether a system receives any loan (equivalently, it
only counts the first loan a system receives). Row 15 shows a dose-response function for how
one, two, or three or more loans affect pollution.

The alternative estimates in Appendix Table 10 are generally in line with the main
results, but we comment on a few of the more interesting estimates. The estimates using
a somewhat balanced panel are generally larger in absolute magnitude than the estimates
with the full sample, while the unweighted estimates are smaller, since they put more weight
on the large sample of organic chemicals, which rarely exceed health standards. Logs and
binary indicators have the same signs but variable magnitudes, and their precision varies
across groups of pollutants. Adding the county×year and associated controls hardly changes
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estimates, from -0.30 (0.06) in the main estimate in Row 1 to -0.31 (0.06) in Row 13. The
dose-response type estimate in Row 15 shows that additional loans decrease pollution; this
is primarily driven by disinfection byproducts and microorganisms.

Appendix Figure 5 shows additional graphs analyzing how Safe Drinking Water loans
affect pollution. Panel A reports results from a difference-in-difference estimator accom-
modating heterogeneous event timing (Gardner 2021), which is one case of more general
heterogeneous difference in difference estimators (Borusyak, Jaravel and Spiess 2022).1 We
estimate standard errors using 200 bootstrap replications. Panel A also shows comparable
two-way fixed effects (TWFE) estimates using the same sample and specification. The re-
sults with both the heterogeneous difference-in-difference estimate and TWFE are similar to
those of the main text. The Gardner estimate has slightly flatter outcomes in the pre-period,
and slightly larger impacts in the post-period, but the coefficients on each event study have
overlapping confidence intervals between the two estimators.

We also report an event study using synthetic differences-in-differences (Arkhangelsky
et al. 2021). Applying this estimator requires changing the data setup in several ways. We
begin the sample in 2008 rather than 2009, so the estimate can include systems receiving loans
in 2009, since this estimator cannot accommodate always-treated units. We also recode loans
as an absorbing state, so that loan receipt is binary (thus ignoring when a system receives a
second, third, or additional loan). Additionally, since this estimator is not designed to weight
across pollutants, we estimate treatment effects separately by pollutant, then average. We
also weight event study indicators evenly across the different treatment years. Using this
adjusted sample, we report results using both this estimator and TWFE on the same sample
and data for comparison. As with the heterogeneous difference in difference estimator, we
use 200 bootstrap replications to estimate standard errors.

Appendix Figure 5, Panel B, shows event study indicators using both TWFE and syn-
thetic differences in differences, on the same sample. The patterns of impacts are similar.
Both estimators find somewhat flat pre-trends in years before a loan is received. Both also
find gradual decreases in the 2 to 5 years after a loan is received. Point estimates remain
negative out to ten years, though precision and magnitude decrease in the later years, which
are identified by fewer observations.

Appendix Figure 5, Panel C, shows effects of loans on bins summarizing the distribution
of regulated pollutants. We estimate versions of equation (3), but where the dependent
variable measures the share of readings that fall in a given pollution bin (e.g., 175 to 200

1Among the various heterogeneous difference-in-difference estimators, we use Gardner (2021) since it
requires the fewest changes to the basic setup of the estimate in the main text to accommodate the estimator’s
assumptions and since it executes relatively quickly in our large samples.
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percent of the health standard). This graph shows that loans especially decrease pollution
above health standards. We find no statistically significant effects on the prevalence of
readings below 75 percent of the health standard. Loans appear to decrease violations, but
not to decrease pollution further below health standards.

C.3 Effects of Safe Drinking Water Loans on Health and Bene-
fit/Cost Analysis

Appendix Table 13 shows sensitivity analyses for mortality. Row 1 re-states estimates from
the main text. Row 2 interacts the loans indicator with a measure of the share of a zip code
that receives water from public water systems, which the SDWA regulates and may benefit
from loans, rather than private wells. The point estimates indicate that all the estimated
treatment effect comes from areas with public water systems, and none from wells, though the
estimates are imprecise. Row 3 shows that each cumulative loan further decreases mortality
rates, so we observe a loan-mortality dose-response function. Rows 4 through 9 use the
11 percent of loans that identify the pollutant each loan targets, and estimates separate
regressions analyzing how loans targeting arsenic (row 4), coliforms (row 5), Disinfectants or
disinfection byproducts (row 6), microbial causes (row 7), nitrates (row 8), or radionuclides
(row 9) affect health. Most of these point estimates are negative, and the magnitude is the
largest for arsenic, although given the small sample sizes of these loans, all these estimates
are imprecise. Ultimately, this setting lacks the statistical power to determine which of these
investments most affects mortality rates.2

Appendix Figure 6 shows alternative event study graphs. Panel A uses an estimator ac-
comodating heterogeneous treatment timing, from Gardner (2021). Panel B uses synthetic
difference-in-differences Arkhangelsky et al. (2021). In both cases, we also show TWFE es-
timates using the same sample, controls, and weighting. In both Panels, the TWFE and
alternative estimators imply qualitatively similar results. The Gardner and TWFE are es-
tremely similar, though Gardner shows very slightly larger treatment effects in post years.
The synthetic difference-in-differences estimator effectively normalizes pre-intervention treat-
ment effects to zero, and then obtains somewhat larger post treatment effects, though the
year-by-year pattern is broadly similar to the TWFE estimates.

The benefit/cost analysis considers two estimates of the value of a statistical life, both
in 2019 dollars: an age-adjusted value of $2.4 million, based on several papers (Ashenfelter
and Greenstone 2004; Murphy and Topel 2006; Deschenes, Greenstone and Shapiro 2018),

2We also investigated separating loans by whether a public water system had elevated rates of a specific
pollutant in 2006–8. Loans with high levels of any specific pollutant decreased mortality by similar amounts.
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and a value of $10.95 million, which the Environmental Protection Agency uses in regulatory
impact assessments (Carleton et al. 2022);3

Since capital costs of these investments come from low-interest loans, which are repaid,
and operating and maintenance costs come from household water user fees (e.g., charges on
monthly utility bills), we do not separately discuss fiscal externalities through the government
budget.

C.4 Instrumental Variables Estimates of Pollution and Health

Methodology

Environmental threats to health, such as air and river pollution, are routinely correlated
with weather, income, and population density. The correlation of drinking water quality
with such confounding variables is plausibly important though empirically unknown, which
can make it difficult to separately establish the health effects of drinking water pollution
from effects of other potential confounding variables.

Thus, we report instrumental variables regressions which use the cumulative number of
loans to a drinking water system as an instrument for drinking water pollution, to measure
the effect of pollution on health. The structural equation is as follows:

lnHzy = ηPczy + W
′

zyπ + µz + µgy + εgy (C–1)

The parameter η represents the pollution-mortality concentration response function, i.e., the
semi-elasticity of the mortality rate with respect to mean pollution concentrations. The first
stage resembles equation (3), but with data aggregated from system s to zip code z:

Pczy = βLzy + W
′

czyπ + µcz + µgy + εczy (C–2)

We also report a version where we discretize Lzy to have indicators for whether a system
receives 1, 2, 3, etc. loans. We additionally report limited information maximum likelihood
estimates, which are mean-unbiased with many weak instruments.

Results

We discuss these estimates cautiously in part due to the multi-dimensional and potentially
nonlinear effects of drinking water pollution. Loans decrease many types of pollution, in-

3This number is similar in magnitude to several value of a statistical life estimates used in USEPA
regulatory impact assessments over the past decade; it is also similar to estimates from more recent economic
analyses focused on drinking water (Carleton et al. 2022; USEPA 2023a,c).
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cluding measured and unregulated pollutants, and plausibly also decrease concentrations of
pollutants that are both unmeasured and unregulated. It is difficult for one or several en-
dogenous variables to provide a complete summary of how loans affect many pollutants, and
to summarize all aspects of the pollutants’ effect on health. Additionally, loans target the
most serious health risks, while instrumental variable regressions extrapolate these estimates
to arbitrary changes in pollution. Loans could reflect local knowledge about which treat-
ment technologies, pollutants, or parts of a pollutant’s distribution are especially relevant
to health. Finally, these estimates aggregated to the zip code×year level have somewhat
weak instruments, though we discuss multi-valued loan instruments and limited information
maximum likelihood (LIML) estimates, which give qualitatively similar results.

Appendix Table 15 reports instrumental variable estimates of the mortality-pollution
concentration-response function, i.e., the semi-elasticity of mortality rates of older Americans
with respect to drinking water pollution. Panel A, reports first-stage regressions of the zip
code’s mean percent of pollution exceeding health standards on the cumulative number of
loans a system has received, corresponding to equation (C–2). These are similar to the
pollution regressions from Table 3, except aggregated to zip code and restricted to the
instrumental variables sample. Panel B reports reduced-form regressions of log mortality
rates on cumulative loans, which resemble (6) except again use zip code rather than drinking
water system, and the Appendix Table 15 sample. Panel C reports the structural equation
corresponding to equation (C–1). Panel D reports LIML estimates using multi-valued loan
instruments, which are mean-unbiased in the presence of weak instruments. Panel E shows
ordinary least squares regressions of mortality on pollution, which provide a comparison.
Columns (1)-(3) are unweighted; columns (4)-(6) are weighted by population. Within a
given column, the four panels use the same sample.

The first stage estimates in Appendix Table 15, Panel A, shows that loans decrease
pollution. The point estimate is moderately larger than the corresponding value in Table
3, but is less precise given the smaller sample and aggregate geography. The first-stage F
statistic, the square of the t statistic, is 7.5, which suggests these are weak instruments,
which we revisit below. The first-stage estimate remains between -0.45 and -0.5 with the
richer controls of columns (4) through (6), but precision increases.

The reduced-form estimates in Appendix Table 15, Panel B, show that loans decrease log
mortality rates for older Americans, echoing Table 5. The unweighted estimates are about
-0.0056, indicating that each loan decreases the mortality rate by around half a percentage
point. As in the main text, the population-weighted estimates are smaller.

Instrumental variables estimates in Appendix Table 15, Panel C, show large effects of
drinking water pollution on mortality. Columns (1) through (3) indicate that a 1 percentage
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point increase in the share of drinking water pollution violating health standards increases
mortality rates by a bit under one percentage point. As a point of reference, Table 3 shows
that in the mean drinking water system receiving loans, 3.1 percent of water violates health
standards. Weighting by population, in columns (4) through (6), obtains a smaller elasticity.

We interpret the difference between weighted and unweighted elasticities cautiously given
the confidence intervals. Nonetheless, one possible explanation would be that more populated
areas have fewer co-morbidities or better access to adaptation opportunities like bottled water
or home filters (Rosinger, Patel and Weaks 2022).

Given the somewhat weak instruments, Panel D shows LIML estimates. The unweighted
LIML estimates are somewhat smaller than the exactly-identified IV estimates in Panel C,
but the weighted LIML estimates are slightly larger than the corresponding IV estimates in
Panel C. Overall, the broad similarity of LIML and exactly-identified IV suggests that weak
instruments do not account for the large semi-elasticities found in Appendix Table 15.

Ordinary least squares regressions in Appendix Table 15, Panel E, show positive and
statistically significant semi-elasticities of log mortality rates with respect to pollution. The
OLS magnitude is far below the instrumental variables magnitude. Measurement error is
one important explanation for these smaller least squares estimates. Water pollution varies
across systems, years, and pollutants, and our aggregate measure of pollution at the zip code
level above standards may crudely proxy the true pollution aggregate that is most relevant to
health. If economic activity increases drinking water pollution but decreases mortality rates,
then omitted variables bias in the least squares regressions would also bias these parameter
estimates towards zero. For reference, ordinary least squares regressions of infant mortality
on particulate matter air pollution can obtain the wrong sign and magnitude (Chay and
Greenstone 2003). Thus, these least squares estimates for drinking water are slightly more
stable than some analogous estimates for air pollution, as they have the expected sign and
are precise.

C.5 Equity of Loans

Appendix Table 12 finds insignificantly different effects of loans on drinking water pollution
across demographic groups. Columns (1) through (4) estimate versions of equation (3)
but where we add interaction terms of the cumulative loans variable with the share of the
community that is black, Hispanic, or has income below the poverty line. Panel A shows
unweighted estimates; Panel B shows estimates weighted by population. No interaction
terms are statistically different from zero. The point estimates weighted by population
suggest that loans decrease mortality relatively less in black and low-income communities,
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but are imprecise.

C.6 Pass-Through of Loans to Municipal Water Spending

This Appendix section evaluates how loans affect municipal water spending. The pass-
through rate of drinking water loans to municipal spending is part of the cost-effectiveness
and benefit-cost calculations from the main text.

A dollar of Safe Drinking Water loans could increase a drinking water system’s spending
on drinking water capital by a dollar if loans are completely passed through to spending,
which would imply no crowding in or crowding out. By contrast, a dollar of loans could lead
to more or less than a dollar of municipal spending. Existing research finds either complete
pass-through of federal to local spending, or some degree of crowding out (Keiser and Shapiro
2019b; Flynn and Smith 2022).

To estimate pass-through, we use microdata from the Annual Survey of Governments
and Census of Governments for years 2009-2019, obtained from the US Census Bureau. We
restrict the sample to a balanced panel of 1,962 governments that can readily be uniquely
identified within a county (e.g., if a county has two governments with names similar to
“Johnstown,” we exclude these governments from the sample, since in this case we cannot
reliably match the government spending to the loan data). We clean government names to
have similar formatting, then join the drinking water loan data to the government spending
data, requiring an exact match on government name and county.

We estimate pass-through from a regression of the log of cumulative municipal capital
investment on the log of cumulative Safe Drinking Water loan amounts:

lnCsy = βlnLsy + µs + µgy + εsy

Here s represents a drinking water system (equivalently, a local government), y is a year,
and µgy are geographic state-by-year fixed effects.

Because we estimate relatively few regressions, we summarize them here. We estimate
an elasticity of cumulative water capital with respect to cumulative Safe Drinking Water
loans of β =0.16 (0.05). Evaluated at the sample mean values of capital and loans, this
implies that a dollar of loans leads to $0.78 (0.25) additional spending on municipal water
capital. This point estimate implies less-than complete pass-through, although fails to reject
the hypothesis of complete pass-through. The estimated elasticity excludes many system-
year observations with zero capital or loan spending. Thus, we also estimate this elasticity
in levels, from a regression of Csy on Lsy. The levels regression is heavily influenced by a
few large cities with skewed capital and loan values. It obtains a pass-through rate of $2.93
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(0.34), implying that a dollar of loans leads to nearly three dollars in additional municipal
capital investment, which would imply substantial crowding in.4

The main text mainly assumes a pass-through rate of one, which is slightly higher than
but within the 95 percent confidence interval of the point estimates. The main text also men-
tions sensitivity analyses considering a pass-through rate of 0.5. Because cost-effectiveness
and benefit-cost statistics scale linearly with the pass-through rate, these alternatives or
others are straightforward to calculate.

4The municipal spending data include a series of reported water utility construction spending, which is
listed separately from total water utility capital outlay. The two series are similar (in cumulative logs, the
pairwise correlation is 0.95).
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Appendix Figure 1: Categories of Drinking Water Pollution

Note: square boxes denote a general group of pollution, boxes with rounded edges identify the five categories of pollution. N represents 
the number of distinct pollution readings in the national data. Statistics include all readings, pollutants, and years, before applying the 
exclusion criteria to construct the analysis sample that are used in most tables and figures.
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Arsenic Lead

Nitrate Total coliforms

Total trihalomethanes (TTHM) Uranium

Notes: graphs use 2003-2019 raw readings data. Vertical line in each graph shows health standard.

Appendix Figure 2: Histograms, Levels of Selected Individual Pollutants
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Panel A. Disinfection byproducts

Panel B. Inorganic pollutants

Panel C. Microorganisms (Total coliforms)

(Continued next page)

Appendix Figure 3: Percent of Readings Violating Health Standards, by County and Pollutant
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Panel D. Organic Chemicals

Panel E. Radionuclides

Notes: data are from the years 2009-2019. Areas in white lack data. 

Appendix Figure 3: Percent of Readings Violating Health Standards, by County and Pollutant (Ctd.)

Percent Violating Standards

Under 0.75

0.75 to 2

Over 2
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Note: figure shows estimates from ten separate regressions. In each, the dependent variable 
is the share of pollution readings in a drinking water system × pollutant that equal a certain 
proportion of the current health standard. The graph shows the regression coefficient for a 
bin divided by the dependent variable mean for the bean, so points in the graph can be 
intepreted as the trend in percent relative to the overall share of readings in the bin. For 
example, in the right-most estimate, the dependent variable equals the share of readings that 
are over 200 percent of the current health standard.

Appendix Figure 4: Trends in US Drinking Water Pollution, Semi-Parametric Bin Estimates
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Panel A. Heterogeneous treatment timing

Panel B. Synthetic Differences-in-Differences

Panel C. Semi-parametric bin estimates across the distribution of pollution

(Continued next page)

Appendix Figure 5: Effects of Safe Drinking Water Loans on Pollution, Alternative Estimates
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Appendix Figure 5: Effects of Safe Drinking Water Loans on Pollution, Alternative Estimates 
(Continued)

Note: Panel A shows the estimate of Gardner (2021), with standard errors estimated using 200 
bootstrap samples. Panel A also shows two-way fixed effects (TWFE) estimate using same sample 
and comparable methodology. Panel B shows the estimator of Arkhangelsky et al. (2021), with 
standard errors estimated using 200 bootstrap samples. Panel B also shows TWFE estimate using 
same sample and comparable methodology. In Panel C, bins are defined in terms of percent of the 
health standard (1-25% of the health standard, 25-50%, etc.). Figure shows regression coefficients 
divided by share of overall sample in the indicated bin. Panels A and C samples include years 2009-
2019, while Panel B sample includes years 2008-2019. TWFE regressions include system × pollutant, 
pollutant × year, and state × year fixed effects and controls for the share of readings from each month. 
Panels A and C weight the five categories of pollution equally, while Panel B is estimated separately 
for each pollutant then pooled. Standard errors are clustered by drinking water system. Panel A and B 
estimates treat loans as an absorbing state, i.e., they measure whether a system has received any 
loans. See text for additional details.
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Panel A. Heterogeneous treatment timing

Panel B. Synthetic Differences-in-Differences

Appendix Figure 6: Effects of Safe Drinking Water Loans on Log Mortality Rates, Alternative Estimates

Notes: Panel A implements the heterogeneous differences in differences estimate of Gardner (2021) 
and Panel B implements Arkhangelsky et al. (2021). Each panel uses 200 bootstrap draws to estimate 
standard errors and reports two-way fixed effect (TWFE) estimates using the same sample and 
assumptions. See notes to Appendix Figure 5 for additional details.
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State Readings Systems Pollutants First year Last year
(1) (2) (3) (4) (5)

Panel A. National
National 230,576,900 168,291 1,838 1974 2022
Panel B. By state
Alabama 3,521,035 594 239 1984 2022
Alaska 838,277 1,329 264 1980 2021
Arizona 4,026,448 1,364 227 1990 2022
Arkansas — — — — —
California 36,650,010 11,585 532 1974 2019
Colorado 2,746,908 2,875 202 2000 2020
Connecticut 6,203,540 3,154 308 2002 2019
Delaware 1,048,575 739 290 1992 2020
Florida 7,773,607 7,427 130 2004 2018
Georgia 6,476,386 3,167 252 1985 2022
Hawaii 239,858 137 51 2011 2021
Idaho 1,421,996 1,994 247 1974 2021
Illinois 10,430,640 1,870 454 1980 2022
Indiana 3,153,689 4,521 142 1980 2022
Iowa 3,187,774 1,469 246 1980 2021
Kansas 2,866,430 1,135 322 1985 2022
Kentucky 1,749,503 432 140 1992 2021
Louisiana 4,502,076 1,260 254 1991 2021
Maine 830,281 436 243 1993 2019
Maryland 3,285,959 3,868 204 1985 2022
Massachusetts 2,019,027 2,285 200 1978 2019
Michigan 1,600,507 1,501 163 2004 2022
Minnesota 5,464,413 11,864 356 1988 2021
Mississippi 2,427,074 1,228 132 1992 2021
Missouri 5,227,835 2,726 340 1985 2022
Montana 2,999,623 2,197 327 1974 2022
Nebraska 3,787,527 2,158 201 1974 2021
Nevada 1,611,996 247 394 1985 2021
New Hampshire 1,034,819 2,740 386 2000 2017
New Jersey 6,282,194 576 288 1981 2019
New Mexico 2,690,984 1,615 307 1989 2022
New York 5,252,772 2,281 387 1982 2019
North Carolina 10,070,690 2,881 168 1980 2022
North Dakota 230,759 395 169 1990 2020
Ohio 4,511,281 6,153 254 2000 2018
Oklahoma 3,122,883 1,240 223 1981 2022
Oregon 1,048,562 954 144 1993 2011
Pennsylvania 22,217,500 15,269 251 1980 2019
Rhode Island 771,057 93 284 1986 2020
South Dakota — — — — —
South Carolina 2,544,311 1,372 160 2000 2022
Tennessee 280,321 706 128 2000 2021
Texas 16,235,130 9,085 517 1992 2019
Utah 3,981,903 500 238 1980 2020
Vermont 1,102,293 469 389 1985 2020
Virginia 4,075,639 4,017 374 1977 2019
Washington 9,740,486 19,872 315 1975 2019
West Virginia 1,066,288 441 295 1986 2020
Wisconsin 7,254,215 23,310 302 1974 2022
Wyoming 971,800 762 197 1979 2022
Notes: Table includes all pollutants and systems. 

Appendix Table 1: States with Drinking Water Pollution Data
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All All Priority
(1) (2) (3) (4) (5) (6) (7) (8) (9)

N readings 230,576,900 145,339,390 61,172,410 83,520,310 4,545,660 21,737,960 61,286,950 45,915,720 1,210,190
N sys. × year × pollutants 57,196,410 29,952,390 5,356,117 27,055,920 952,969 8,065,994 2,552,846 17,978,060 451,104
N sys. × years 2,678,375 2,602,520 2,549,859 1,717,807 529,373 1,857,983 1,932,230 685,237 251,930
N sys. 168,291 163,200 161,568 140,595 60,485 150,994 136,148 74,501 50,463
N pollutants 1,838 80 11 1,749 4 16 9 53 4

Percent above health std. 1.614 1.614 3.144 — 5.05 1.91 2.58 0.25 6.11
Share equal to zero 0.82 0.87 0.83 0.75 0.21 0.59 0.95 0.98 0.47

Share by time period
Pre-1993 0.04 0.03 0.01 0.05 0.02 0.04 0.01 0.05 0.06
1993-1997 0.09 0.08 0.04 0.10 0.03 0.11 0.03 0.12 0.07
1998-2002 0.11 0.10 0.09 0.13 0.05 0.12 0.07 0.13 0.12
2003-2007 0.17 0.17 0.17 0.18 0.19 0.19 0.14 0.18 0.26
2008-2012 0.21 0.22 0.24 0.20 0.23 0.20 0.24 0.20 0.19
2013-2019 0.34 0.35 0.39 0.31 0.43 0.30 0.43 0.28 0.26

Share by system type
Community water sys. 0.87 0.85 0.84 0.90 0.95 0.82 0.84 0.87 0.96

    School 0.017 0.018 0.012 0.02 0.01 0.03 0.01 0.02 0.01
Notes: "systems" refers to drinking water systems. "All" statistics weight the five categories of pollution equally. This table imposes several restrictions 
applied to construct the analysis sample. 

Radio-
nuclides

Appendix Table 2a: Descriptive Statistics on Pollution Data, by Category of Pollutant

Inorganic 
chemicals

Organic 
chemicals

Categories of regulated pollutionRegulated pollutants
Unregulated 

pollutants
Micro-

organisms
Disinfection 
byproducts
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Arsenic Lead Nitrate
Total 

coliforms

Trihalo-
methanes 
(TTHM) Uranium

(1) (2) (3) (4) (5) (6)
N readings 1,193,143 3,952,215 3,518,972 50,704,450 2,481,685 181,912
N system × year × pollutants 507,432 487,366 1,598,421 1,846,191 524,794 65,688
N system × years 507,432 487,366 1,598,421 1,846,191 524,794 65,688
N system 75,923 73,084 127,540 123,498 60,355 24,045
N chemicals 1 1 1 1 1 1

Percent above health std. 9.41 2.10 3.77 2.58 6.30 4.73
Mean reading (mg/L or pCi/L) 0.003 0.002 2.49 0.02 0.03 5.37
Health standard 0.010 0.015 10.00 0.00 0.08 30.00
Share equal to zero 0.59 0.65 0.29 0.97 0.22 0.51

Share by time period
Pre-1993 0.07 0.03 0.03 0.01 0.03 0.00
1993-1997 0.08 0.11 0.10 0.03 0.05 0.01
1998-2002 0.11 0.11 0.13 0.09 0.08 0.03
2003-2007 0.17 0.17 0.20 0.16 0.18 0.28
2008-2012 0.22 0.20 0.22 0.25 0.22 0.26
2013-2017 0.33 0.33 0.29 0.40 0.39 0.35

Share by system type
Community water system 0.84 0.89 0.65 0.84 0.96 0.96

    School 0.03 0.03 0.02 0.01 0.01 0.01

Appendix Table 2b: Descriptive Statistics on Pollution Data, by Pollutant

D-12



Dis-
infectants

Disinfection 
byproducts

Inorganic 
chemicals

Micro-
organisms

Organic 
chemicals

Radio-
nuclides

Secondary 
(taste)

(1) (2) (3) (4) (5) (6) (7)
Panel A. Percent above health standard, pollution categories
Disinfectants 1.00 — — — — — —
Disinfection byproducts 0.00 1.00 — — — — —
Inorganic chemicals 0.00 0.00 1.00 — — — —
Microorganisms 0.02 0.00 0.00 1.00 — — —
Organic chemicals 0.00 0.00 0.05 0.00 1.00 — —
Radionuclides -0.01 -0.02 0.11 -0.01 0.05 1.00 —

Panel B. Standardized values, pollution categories
Disinfectants 1.00 — — — — — —
Disinfection byproducts 0.22 1.00 — — — — —
Inorganic chemicals -0.10 -0.07 1.00 — — — —
Microorganisms -0.01 0.01 0.01 1.00 — — —
Organic chemicals 0.04 0.06 0.07 0.00 1.00 — —
Radionuclides -0.06 -0.12 0.16 0.00 0.04 1.00 —
Secondary (taste) 0.06 0.01 0.09 0.10 0.00 0.11 1.00
Note: each observation in this analysis is a system × pollutant × year.

Arsenic Lead Nitrate
Trihalome
thanes Total coliforms Uranium

(1) (2) (3) (4) (5) (6)
Panel C. Percent above health standard, individual pollutants
Arsenic 1.00 — — — — —
Lead 0.01 1.00 — — — —
Nitrate 0.07 0.00 1.00 — — —
Trihalomethanes 0.01 0.01 0.00 1.00 — —
Total coliforms -0.02 0.01 0.00 0.00 1.00 —
Uranium 0.24 0.02 0.14 0.01 0.01 1.00

Panel D. Standardized values, individual pollutants
Arsenic 1.00 — — — — —
Lead 0.00 1.00 — — — —
Nitrate 0.09 0.04 1.00 — — —
Trihalomethanes 0.00 0.02 0.02 1.00 — —
Total coliforms -0.11 -0.01 -0.12 0.00 1.00 —
Uranium 0.31 0.05 0.30 0.01 -0.07 1.00

Appendix Table 3 (ctd.): Pairwise Correlations Between Pollutants

Note: each observation in this analysis is a system × pollutant × year. Standardized values equal the 
Z-score calculated within each pollutant times 100.

Appendix Table 3: Pairwise Correlations Between Pollutants
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Total number of loans
Total loan amount ($2019 millions)
Mean loan amount (million $/loan)
Mean population served per loan (SDWIS)
Mean population age ≥ 65 served per loan 

Share of loans listing targeted pollutant: Share Count Share Count
    Arsenic 0.03 246 0.03 290

Coliform 0.02 130 0.01 138
    Disinfectants, disinfection byproducts 0.03 249 0.03 259
    Microbial 0.02 148 0.02 163
    Nitrate 0.01 107 0.01 115
    Radionuclides 0.01 122 0.01 126

No listed targeted pollutant 0.89 7,342 0.89 8,222

Share of loans by year
   <2009 0.00 0 0.10 934

2009 0.16 1,302 0.14 1,302
2010 0.09 722 0.08 722
2011 0.08 620 0.07 620
2012 0.09 758 0.08 758
2013 0.10 798 0.09 798
2014 0.09 766 0.08 766
2015 0.09 719 0.08 719
2016 0.09 746 0.08 746
2017 0.09 770 0.08 770

    >2017 0.10 819 0.09 819
Notes: dollar figures are deflated using the GDP deflator. Population age 65 and over 
multiples population per loan from SDWIS by the share of US in 2010 that was 65 years 
and over (12.7%).

9,298 9,426

Appendix Table 4: Description of Safe Drinking Water Loans

73,211

(1)
All years

(2)
9,217
31,735
3.46

74,223

Years 2009-2019

8,251
27,896
3.38
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Panel A. No fixed effects
Log population served 0.077*** — — — — 0.078*** 0.086*** 0.079*** 0.075*** 0.086***

(0.003) — — — — (0.003) (0.003) (0.003) (0.003) (0.003)
Above-median share violating — 0.055*** — — — 0.065*** — — — 0.060***
     health standards in 2006 — (0.009) — — — (0.009) — — — (0.009)
Above-median share Black — — 0.051*** — — — -0.084*** — — -0.082***

— — (0.008) — — — (0.008) — (0.008)
Above-median share Hispanic — — — -0.002 — — — -0.050*** — -0.037***

— — — (0.008) — — — (0.007) — (0.008)
Above-median share Poor — — — — 0.091*** — — — 0.061*** 0.062***

— — — — (0.008) — — — (0.007) (0.007)

Panel B. Include State Fixed Effects
Log population served 0.075*** — — — — 0.076*** 0.080*** 0.075*** 0.074*** 0.078***

(0.003) — — — — (0.003) (0.003) (0.003) (0.003) (0.003)
Above-median share violating — 0.065*** — — — 0.069*** — — — 0.063***
     health standards in 2006 — (0.009) — — — (0.009) — — — (0.009)
Above-median share Black — — 0.076*** — — — -0.043*** — — -0.046***

— — (0.009) — — — (0.008) — — (0.008)
Above-median share Hispanic — — — 0.088*** — — — 0.007 — 0.013

— — — (0.010) — — — (0.009) — (0.009)
Above-median share Poor — — — — 0.109*** — — — 0.091*** 0.088***

— — — — (0.008) — — — (0.008) (0.008)
N 23,272 23,272 23,272 23,272 23,272 23,272 23,272 23,272 23,272 23,272

Appendix Table 5. Characteristics of Systems Receiving Loans

Note: dependent variable is cumulative number of loans received by year 2019. Each observation represents one drinking water system. 
Sample includes systems with non-missing values of independent variables. All regressions have N=23,272.
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Pollution category
Arsenic Lead Nitrate Synthetic Pesticides Uranium

(1) (2) (3) (4) (5) (6) (7)
Total organic carbon 2.280*** — — — — — —

(0.400) — — — — — —
Arsenic deposits — 6.238*** — — — — —

— (1.558) — — — — —
Log lead service lines — — 0.183*** — — — —

— — (0.029) — — — —
— — — 0.349*** — — —
— — — (0.053) — — —

TRI emissions — — — — 0.005 — —
— — — — (0.004) — —

Pesticide application — — — — — 0.012*** —
— — — — — (0.004) —

Uranium deposits — — — — — — 1.106*
— — — — — — (0.623)

N 542,322 401,868 411,520 1,378,394 16,221,588 1,400,419 279,150
Dependent var. mean 4.02 3.62 1.63 0.99 0.02 0.18 4.04

Disinfection 
byproducts

Notes: Each observation is a system × pollutant × year representing the share of drinking water 
pollution readings above health standards. Data pool available years in 2003-2019. See text for data 
sources. Total organic carbon is county mean. Arsenic and uranium deposits are indicators for whether 
a county has deposits of the minerals. Lead service lines is per capita. Nitrogen and pesticide are in 
log pounds per land area. TRI is an indicator for whether a county has a Toxic Release Inventory plant 
that emits a regulated water pollutant. Standard errors clustered by county. Asterisks indicate p-value 
less than 0.01 (***), 0.05 (**), or 0.10 (*). 

Organic chemicals

Appendix Table 6: Pollution Sources and Levels

Nitrogen from 
fertilizer and manure

Inorganic chemicals
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(1) (2) (3) (4) (5) (6) (7)
Panel A. Include service territories imputed as a circle
Log population served -0.016 — — — -0.011 -0.021* -0.025**

(0.011) — — — (0.012) (0.012) (0.011)
Above-median share Black — -0.074 — — -0.058 — —

— (0.051) — — (0.055) — —
Above-median share Hispanic — — 0.080 — — 0.097* —

— — (0.049) — — (0.052) —
Above-median share Poor — — — 0.321*** — — 0.332***

— — — (0.050) — — (0.050)

Panel B. Disinfection byproducts
Log population served -0.733*** — — — -0.745*** -0.655*** -0.761***

(0.037) — — — (0.038) (0.037) (0.037)
Above-median share Black — -0.917*** — — 0.119 — —

— (0.136) — — (0.138) — —
Above-median share Hispanic — — -1.829*** — — -1.364*** —

— — (0.130) — — (0.128) —
Above-median share Poor — — — 1.574*** — — 1.728***

— — — (0.122) — — (0.119)

Panel C. Inorganic chemicals
Log population served -0.121*** — — — -0.118*** -0.136*** -0.123***

(0.007) — — — (0.009) (0.008) (0.007)
Above-median share Black — -0.236*** — — -0.031 — —

— (0.029) — — (0.035) — —
Above-median share Hispanic — — 0.244*** — — 0.340*** —

— — (0.027) — — (0.030) —
Above-median share Poor — — — -0.006 — — 0.065**

— — — (0.028) — — (0.028)

Panel D. Microorganisms
Log population served 0.286*** — — — 0.305*** 0.261*** 0.292***

(0.034) — — — (0.035) (0.033) (0.034)
Above-median share Black — 0.279*** — — -0.172*** — —

— (0.061) — — (0.053) — —
Above-median share Hispanic — — 0.687*** — — 0.519*** —

— — (0.064) — — (0.054) —
Above-median share Poor — — — -0.084 — — -0.201***

— — — (0.061) — — (0.060)
(Continued next page)

Appendix Table 7: Inequality in U.S. Drinking Water Pollution Levels, Sensitivity Analysis
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(1) (2) (3) (4) (5) (6) (7)
Panel E. Organic chemicals
Log population served 0.001*** — — — 0.001*** 0.001*** 0.001***

(0.000) — — — (0.000) (0.000) (0.000)
Above-median share Black — 0.001 — — -0.001 — —

— (0.001) — — (0.001) — —
Above-median share Hispanic — — 0.002 — — 0.001 —

— — (0.001) — — (0.001) —
Above-median share Poor — — — 0.003*** — — 0.003**

— — — (0.001) — — (0.001)

Panel F. Radionuclides
Log population served -0.462*** — — — -0.480*** -0.532*** -0.466***

(0.066) — — — (0.072) (0.071) (0.067)
Above-median share Black — -0.666** — — 0.167 — —

— (0.295) — — (0.321) — —
Above-median share Hispanic — — 1.058*** — — 1.472*** —

— — (0.279) — — (0.295) —
Above-median share Poor — — — -0.019 — — 0.170

— — — (0.289) — — (0.288)

Month controls X X X X X X X

Notes: Demographics describe each drinking water system, using time-invariant demographic data from 
year 2010 Census, aggregated from block data. FE stands for fixed effects. Each observation underlying 
the analysis represents mean pollution for a drinking water system × pollutant × year. Sample includes 
systems in years 2003-2019. Standards refer to current primary health standards. Month controls are the 
share of raw pollution readings from each month of the calendar year.  Standard errors clustered by 
drinking water system.  Asterisks are shown for difference and indicate p-value less than 0.01 (***), 0.05 
(**), or 0.10 (*).

Appendix Table 7: Inequality in U.S. Drinking Water Pollution Levels, Sensitivity Analysis (Ctd.)
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Disinfection 
byproducts

Inorganic 
chemicals

Micro-
organisms

Organic 
chemicals

Radio-
nuclides Arsenic Lead Nitrate Regulated

Non-
regulated

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
1. Main estimates -0.114*** -0.175*** -0.026*** -0.155*** -0.001*** -0.233*** -0.258*** -0.053*** -0.011*** -0.638*** —

(0.002) (0.006) (0.001) (0.003) (0.000) (0.013) (0.009) (0.003) (0.002) (0.014) —

Other 
 2. Standardized -0.638*** -0.192*** -0.372*** -1.160*** -0.182*** -1.323*** -0.966*** -1.202*** -0.072*** -0.638*** -0.350**
     value (0.014) (0.034) (0.008) (0.025) (0.007) (0.063) (0.042) (0.034) (0.018) (0.014) (0.137)

 3. Only CWS -0.098*** -0.184*** -0.026*** -0.051*** -0.001*** -0.237*** -0.243*** -0.044*** -0.005* -0.511*** —
(0.003) (0.006) (0.001) (0.003) (0.000) (0.013) (0.010) (0.003) (0.002) (0.015) —

 4. Semi- -0.306*** -0.303*** -0.048*** -0.039*** -0.001*** -1.267*** -0.841*** -0.094*** -0.010*** -1.473*** —
       balanced panel (0.015) (0.010) (0.002) (0.002) (0.000) (0.077) (0.031) (0.009) (0.002) (0.082) —

 5. Years -0.105*** -0.202*** -0.027*** -0.154*** -0.002*** -0.208*** -0.202*** -0.065*** -0.022*** -0.664*** —
       1992-2019 (0.002) (0.007) (0.001) (0.003) (0.000) (0.011) (0.006) (0.002) (0.002) (0.012) —

 6. Weight by -0.101*** -0.135*** -0.011*** -0.581*** -0.001** -0.117*** -0.103*** -0.016 0.001 -0.494*** —
       population (0.009) (0.019) (0.002) (0.089) (0.000) (0.024) (0.019) (0.010) (0.004) (0.067) —

 7. Unweighted -0.032*** -0.164*** -0.026*** -0.151*** -0.001*** -0.225*** -0.259*** -0.054*** -0.011*** -0.338*** —
(0.000) (0.005) (0.001) (0.003) (0.000) (0.013) (0.009) (0.003) (0.002) (0.006) —

Non-aggregated data
 8. Basic -0.148*** -0.268*** -0.063*** -0.071*** 0.000 -0.398*** -0.600*** -0.066*** -0.028*** -0.625*** —
     non-aggregated (0.006) (0.009) (0.003) (0.003) (0.002) (0.032) (0.028) (0.004) (0.010) (0.024) —

 9. Include raw -0.134*** -0.253*** -0.065*** -0.082*** -0.004** -0.304*** -0.576*** -0.065*** -0.047** -0.533*** —
       water (0.005) (0.009) (0.004) (0.004) (0.002) (0.029) (0.030) (0.004) (0.020) (0.024) —

 10. Sample point FE -0.107*** -0.278*** -0.045*** -0.027*** -0.001*** -0.338*** -0.378*** -0.063*** 0.002 -0.568*** —
(0.006) (0.013) (0.002) (0.002) (0.000) (0.032) (0.022) (0.004) (0.008) (0.024) —

 11. Log -0.579*** 0.002 -1.126*** — -0.796 -1.201*** -2.587*** -1.811*** 0.092 -0.625*** —
(0.046) (0.061) (0.035) — (0.514) (0.132) (0.164) (0.067) (0.067) (0.024) —

(Continued next page)

Standardized value
Appendix Table 8: Trends in US Drinking Water Pollution, Sensitivity and Heterogeneity

Individual pollutants

Regulated

Regulated Pollution Categories
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Disinfection 
byproducts

Inorganic 
chemicals

Micro-
organisms

Organic 
chemicals

Radio-
nuclides Arsenic Lead Nitrate Regulated

Non-
regulated

(1) (2) (3) (4) (5) (6) (7) (9) (8) (10) (11)

 12. Indicator: -0.042*** 0.425*** -0.065*** -0.067*** -0.052*** -0.570*** 0.026 -0.642*** -0.084*** -0.625*** —
       positive (0.007) (0.016) (0.007) (0.003) (0.007) (0.036) (0.035) (0.021) (0.015) (0.024) —

Fixed effects:
  System × pollutant X X X X X X X X X X X
Month controls X X X X X X X X X X X

Notes: Each observation is a drinking water system × pollutant × year. Basic sample weights the five categories of pollution equally, and includes years 
2003-2019. Dependent variables are multiplied by 100. Standard errors clustered by drinking water system. Except where otherwise noted, dependent 
variable is percent of readings violating current health standards. Asterisks indicate p-value less than 0.01 (***), 0.05 (**), 0.10 (*). 

Appendix Table 8: Trends in US Drinking Water Pollution, Sensitivity Analysis (Continued)

Regulated

Regulated Pollution Categories Individual pollutants Standardized value
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(1) (2) (3) (4) (5) (6) (7)
Panel A. No additional controls
Year -0.03** -0.10*** -0.10*** -0.10*** -0.04*** -0.03** -0.03**

(0.01) (0.01) (0.00) (0.00) (0.01) (0.01) (0.01)
Year * …
   Log population served -0.01*** — — — -0.01*** -0.01*** -0.01***

(0.00) — — — (0.00) (0.00) (0.00)
   Above-median share Black — -0.02*** — — -0.01 — —

— (0.01) — — (0.01) —
   Above-median share Hispanic — — -0.03*** — — -0.02*** —

— — (0.01) — — (0.01) —
   Above-median share Poor — — — -0.02** — — -0.01

— — — (0.01) — — (0.01)

Panel B. Include state×year linear time trends
Year * …
   Log population served -0.01*** — — — -0.01*** -0.01*** -0.01***

(0.00) — — — (0.00) (0.00) (0.00)
   Above-median share Black — -0.02*** — — -0.01 — —

— (0.01) — — (0.01) — —
   Above-median share Hispanic — — -0.02** — — -0.01 —

— — (0.01) — — (0.01) —
   Above-median share Poor — — — -0.02*** — — -0.02***

— — — (0.01) — — (0.01)

Panel C. Include "Tier 3" geography links
Year -0.05*** -0.09*** -0.09*** -0.10*** -0.05*** -0.04*** -0.05***

(0.01) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01)
Year * …
   Log population served -0.01*** — — — -0.01*** -0.01*** -0.01***

(0.00) — — — (0.00) (0.00) (0.00)
   Above-median share Black — -0.01** — — 0.00 — —

— (0.01) — — (0.01) — —
   Above-median share Hispanic — — -0.03*** — — -0.02*** —

— — (0.01) — — (0.01) —
   Above-median share Poor — — — 0.00 — — 0.00

— — — (0.01) — — (0.01)

Month controls X X X X X X X
N 7,670,661 7,670,661 7,670,661 7,670,661 7,670,661 7,670,661 7,670,661

Appendix Table 9. Drinking Water Pollution Trends, by Demographics

Note: dependent variable is share of drinking water pollution readings above health standards. Each 
observation represents mean pollution for a drinking water system × pollutant × year. Regressions weight 
the five categories of pollution equally. Sample includes years 2003-2019. Sample includes systems with 
non-missing values of independent variables. Standard errors are clustered by drinking water system. 
Panel C adds systems where EPIC determines service territory by drawing a circle around the system 
centroid. Asterisks indicate p-value less than 0.01 (***), 0.05 (**), or 0.10 (*).
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Dis-
infection 

byproducts
Inorganic 
chemicals

Micro-
organisms

Organic 
chemicals

Radio-
nuclides Arsenic Nitrate Lead Regulated

Non-
regulated

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
1. Main estimates -0.30*** -0.40*** -0.02 -0.21* 0.00 -0.78*** -0.31* -0.08* 0.09 -1.53*** -0.73

(0.06) (0.11) (0.02) (0.12) (0.00) (0.30) (0.16) (0.05) (0.06) (0.32) (0.65)

Other 
 2. Standardized -1.53*** -1.70*** -0.20 -0.03 -0.03 -3.73*** -0.86 -0.19 1.42* -1.53*** -0.73
     value (0.32) (0.65) (0.16) (0.60) (0.08) (1.22) (0.76) (0.41) (0.84) (0.32) (0.65)

 3. Only CWS -0.27*** -0.38*** -0.02 -0.47*** 0.00 -0.81*** -0.32** -0.08* 0.05 -1.32*** —
(0.05) (0.11) (0.02) (0.11) (0.00) (0.30) (0.16) (0.05) (0.06) (0.27) —

 4. Semi- -0.45** -0.32*** 0.10*** -0.38*** 0.00 -1.60* 0.47** -0.10* 0.24** -2.00** —
       balanced panel (0.19) (0.12) (0.03) (0.11) (0.00) (0.82) (0.23) (0.05) (0.11) (0.83) —

 5. Years -0.28*** -0.53*** 0.02 -0.29** 0.00 -0.31 -0.09 0.01 0.06 -1.79*** —
       1992-2019 (0.05) (0.13) (0.01) (0.11) (0.00) (0.22) (0.16) (0.04) (0.05) (0.31) —

 6. Weight by -0.14*** -0.18 0.01 -2.91* 0.00 0.00 0.14** -0.02 0.05 -0.52** —
       population (0.05) (0.12) (0.01) (1.64) (0.00) (0.17) (0.06) (0.03) (0.06) (0.22) —

 7. Unweighted -0.07*** -0.40*** -0.02 -0.21* 0.00 -0.77*** -0.31* -0.08* 0.09 -0.39*** —
(0.01) (0.11) (0.02) (0.11) (0.00) (0.30) (0.16) (0.05) (0.06) (0.08) —

Non-aggregated data
 8. Basic -0.16** -0.19 0.06 -0.05 -0.02 -1.34** 0.22 -0.08 0.23 -0.75 —
     non-aggregated (0.07) (0.13) (0.04) (0.05) (0.02) (0.52) (0.40) (0.10) (0.16) (0.48) —

 9. Include raw -0.13** -0.15 0.02 -0.09 -0.05*** -1.08** 0.20 -0.14 0.21 -0.58* —
       water (0.06) (0.10) (0.05) (0.06) (0.02) (0.51) (0.37) (0.20) (0.15) (0.32) —

 10. Sample point FE -0.22*** -0.29* 0.08 0.02 -0.01 -1.79*** -0.40 0.00 0.39* -1.15** —
(0.07) (0.17) (0.05) (0.02) (0.00) (0.50) (0.25) (0.11) (0.21) (0.58) —

(Continued next page)

Appendix Table 10: Effects of Safe Drinking Water Loans on Pollution, Sensitivity and Heterogeneity

Regulated

Regulated Pollution Categories Individual pollutants Standardized value
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infection chemicals organisms chemicals nuclides Arsenic Nitrate Lead Regulated regulated
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

 11. Log -1.98** -1.73 0.27 — -5.95*** -5.64*** 1.73 0.44 2.47 — —
(0.90) (1.38) (0.46) — (1.56) (1.55) (2.16) (0.54) (1.55) — —

 12. Indicator: -0.09 0.09 -0.47*** -0.07 -0.39* 0.06 -1.99** -0.36* -0.37 — —
       positive (0.10) (0.15) (0.15) (0.05) (0.23) (0.53) (0.89) (0.20) (0.39) — —

Estimates specific to loans
 13. Other controls -0.31*** -0.41*** -0.02 -0.21* 0.00 -0.78*** -0.31* -0.08 0.08 -1.56*** —

(0.06) (0.11) (0.02) (0.12) (0.00) (0.30) (0.17) (0.05) (0.06) (0.32) —

 14. First loan -0.53*** -0.64*** -0.10*** -0.01 0.00 -1.52*** -0.86*** -0.17* -0.05 -2.30*** —
(0.11) (0.18) (0.03) (0.12) (0.00) (0.49) (0.33) (0.10) (0.10) (0.55) —

 15. Loan #1 -0.50*** -0.60*** -0.10*** 0.06 0.00 -1.47*** -0.79** -0.17* -0.11 -2.11*** —
(0.11) (0.18) (0.03) (0.11) (0.00) (0.51) (0.33) (0.10) (0.11) (0.57) —

       Loan #2 -0.73*** -0.86*** -0.11* -0.43* 0.00 -1.94*** -1.48*** -0.18 0.29* -3.31*** —
(0.17) (0.30) (0.06) (0.24) (0.00) (0.69) (0.56) (0.15) (0.15) (0.81) —

       Loan #3 or more -0.82*** -1.34*** 0.03 -1.11* 0.01 -1.36 -0.29 -0.13 0.59** -4.70*** —
(0.26) (0.45) (0.05) (0.63) (0.01) (1.24) (0.55) (0.10) (0.29) (1.38) —

Fixed effects:
  Pollutant × system X X X X X X X X X X X
  Pollutant × year X X X X X X X X X X X
  State × year X X X X X X X X X X X
Month controls X X X X X X X X X X X

Notes: Each observation is a system × pollutant × year. Disinfectant and radionuclide readings are all below the associated health standards (MCL). Sample 
includes years 2009-2019 for all pollutants with health standards.Statistics weight the five categories of pollution equally. "Years since grant trend" equals the 
year an observation represents minus the first year any system in an observation's county received a loan. Other controls includes air pollution ozone 
nonattainment, air pollution particulate matter nonattainment, cumulative Clean Water Act revolving loans, number of Toxic Release Inventory plants emitting 
water pollution, log income per capita, and the employment rate. Standard errors clustered by drinking water system. Except where otherwise indicated, 
dependent variable is percent of water violating standards. Asterisks indicate p-value less than 0.01 (***), 0.05 (**), 0.10 (*).

Appendix Table 10: Effects of Safe Drinking Water Loans on Pollution, Sensitivity Analyses (Continued)

Regulated
Regulated Pollution Categories Individual pollutants Standardized value
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Pollutants Ozone PM2.5 BOD
Fecal 

coliform
Oxygen 
deficit TSS

Not 
fishable

Not 
swimmable

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A. Levels
Loans 0.0001* -0.0429 -0.0231 -32.8829 0.6041* -1.343 0.0036 -0.0008

(0.0001) (0.0277) (0.0427) (21.0866) (0.3333) (1.0380) (0.0028) (0.0036)

Y mean 0.04 8.63 1.64 597.92 24.00 28.62 0.24 0.47
Observations 46,745 48,896 144,964 234,686 2,781,116 520,388 3,675,366 3,675,366

Panel B. Standardized values
Loans 0.0168* -0.0161 -0.0114 -0.015 0.0190* -0.0149 — —

(0.0098) (0.0104) (0.0211) (0.0096) (0.0105) (0.0115) — —

Y mean 0.0000 0.0000 0.036 0.016 0.025 -0.005 — —
Observations 46,745 48,896 144,964 234,686 2,781,116 520,388 — —

Fixed effects:
  Pollutant × monitor X X X X X X X X
  Pollutant × year X X X X X X X X
  State × year X X X X X X X X
Month controls X X X X X X X X

Appendix Table 11: Falsification Test: Effects of Safe Drinking Water Act Loans on Air, River, and Lake 
Air pollution River and lake pollution

Notes:  Each observation is a pollutant × monitor × year, which we link to the population-weighted cumulative 
number of loans for each county × year. Data covers years 2009-2019. Loans variables are cumulative. All 
variables are measured in physical units. Not fishable and not swimmable are defined as in Keiser and Shapiro 
(2019b). Standard errors are clustered by county. Asterisks indicate p-value less than 0.01 (***), 0.05 (**), 0.10 
(*).
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(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Unweighted
Cumulative loans -0.210 -0.527** -0.210 -0.097 -0.0101*** -0.00863*** -0.00998*** -0.00573**

(0.163) (0.209) (0.163) (0.189) (0.00212) (0.00228) (0.00218) (0.00292)
Cumulative loans * Black 0.228 0.252 0.228 -0.231 0.00699 0.00900 0.00772 -0.00884

(0.387) (0.549) (0.387) (0.415) (0.00654) (0.00686) (0.00697) (0.00688)
Cumulative loans * Hispanic 0.025 -0.132 0.025 0.089 0.00745 0.00608 0.00696 -0.000791

(0.541) (0.717) (0.541) (0.579) (0.00477) (0.00522) (0.00521) (0.00516)
Cumulative loans * Poverty -0.194 0.658 -0.194 -0.225 0.0103 0.00434 0.00996 0.0168

(0.962) (1.275) (0.962) (1.000) (0.0132) (0.0158) (0.0144) (0.0130)

Observations 862,710 762,771 862,710 142,426 259,190 234,165 232,282 653,741

Panel B: Weighted by population
Cumulative loans -0.035 -0.224 -0.035 -0.314 -0.00754*** -0.00690*** -0.00784*** -0.00611***

(0.204) (0.279) (0.204) (0.229) (0.00170) (0.00138) (0.00183) (0.00188)
Cumulative loans * Black 0.029 -0.016 0.029 0.431 0.0119* 0.0131** 0.0130* 0.00942

(0.528) (0.750) (0.528) (0.448) (0.00703) (0.00659) (0.00681) (0.00707)
Cumulative loans * Hispanic -0.603 -0.703 -0.603 0.322 0.00439 0.00393 0.00367 0.00318

(0.930) (1.144) (0.930) (0.959) (0.00442) (0.00453) (0.00452) (0.00452)
Cumulative loans * Poverty 0.901 2.029 0.901 0.239 0.0140* 0.0107 0.0167** 0.0171**

(1.816) (2.262) (1.816) (1.754) (0.00737) (0.00664) (0.00791) (0.00770)

Observations 862,710 762,771 862,710 142,426 259,190 234,165 232,282 216,751

System × pollutant FE X X X X
Month controls X X X X
Zip code FE X X X X
State × year FE X X X X X X X X
County controls X X
With drinking water data X X
Years 1993-2019 X X

Pollution Health
Appendix Table 12: Inequality and Impacts of Safe Drinking Water Loan Loans on Pollution and Health

Notes: In columns (1) through (4), the dependent variable is the percent of readings in a system × pollutant × year 
that violate health standards. Demographics are time-invariant, from year 2010 Census Block data. Statistics 
weight the five categories of pollution equally.
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(1) (2)
1. Main estimates -0.0059*** -0.0023**

(0.0014) (0.0010)

Alternatives
 2. Piped water interaction -0.0105 -0.0021

(0.0078) (0.0039)
     Main estimate 0.0042 -0.0002

(0.0077) (0.0039)

 3. Loan# 1 -0.0022 0.0030
(0.0042) (0.0028)

       loan #2 -0.0102* -0.0045
(0.0056) (0.0040)

       loan #3 or more -0.0263*** -0.0110**
(0.0058) (0.0044)

By pollutant a loan targets
 4. Arsenic -0.0235 0.0147

(0.0223) (0.0246)

 5. Coliforms -0.0006 -0.0077
(0.0120) (0.0056)

 6. Disinfectants, disinfection byproducts -0.0044 0.0008
(0.0040) (0.0021)

 7. Microbial -0.0058 -0.0011
(0.0040) (0.0015)

 8. Nitrates 0.0234 0.0381**
(0.0268) (0.0186)

 9. Radionuclides -0.0097 -0.0018
(0.0198) (0.0096)

Weighted X

Appendix Table 13: Effects of Drinking Water Loans on Log Mortality 
Rates: Sensitivity and Heterogeneity 

Note: Standard errors clustered by drinking water system. Estimates 
include zip code fixed effects, state-by-year fixed effects, and log system 
population interacted with year fixed effects. Asterisks indicate p-value 
less than 0.01 (***), 0.05 (**), 0.10 (*). 
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(1) (2) (3) (4)
Panel A: Unweighted
Cumulative loans -0.0048* -0.0042 -0.0046 0.0031

(0.0027) (0.0026) (0.0029) (0.0040)
Observations 263,576 261,969 236,201 665,990

Panel B: Weighted by population
Cumulative loans -0.0007 0.0000 -0.0005 0.0020

(0.0026) (0.0025) (0.0026) (0.0035)
Observations 263,576 261,969 236,201 665,990

Fixed effets:
  Zip code X X X X
  State × year X X X X
County controls X
With drinking water data X
Years 1993-2019 X

Notes: each observation is a zip code×year. Columns (1)-(3) include years 2009-2019. 
Dependent variable is log of hospital admissions per 10,000 Medicare population. Main 
explanatory variable is the cumulative number of drinking water loans a system has received. 
"County controls" include county-year controls for the following: cumulative Clean Water Act 
revolving fund loans; Clean Air Act nonattainment status for ozone and particulate matter; 
inverse hyperbolic sine of the number of Toxic Release Inventory plants; personal income per 
capita; unemployment rate; SDWIS violations in years 2006-2008; opioid dispensing rate per 
100 people (plus missing indicator); percent of population with health insurance; inverse 
hyperbolic sine of federal assistance and contracts. Standard errors clustered by drinking 
water system. "With drinking water data" restricts the sample to drinking water systems and 
years for which we have drinking water pollution microdata. Standard errors clustered by 
drinking water system. Asterisks indicate p-value less than 0.01 (***), 0.05 (**), 0.10 (*).

Appendix Table 14: Effects of Drinking Water Loans on Log Hospital Admissions 
Rate
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(1) (2) (3) (4) (5) (6)
Panel A: First-stage estimates for pollution above health standards
Cumulative loans -0.608*** -0.551** -0.469** -0.491*** -0.436** -0.439**

(0.222) (0.223) (0.202) (0.174) (0.193) (0.171)
Observations 725,682 662,998 256,878 725,682 662,998 256,878

Panel B: Reduced-form regression of log mortality rate on cumulative loans
Cumulative loans -0.00559*** -0.00532*** -0.00290* -0.00200* -0.00189* -0.00116

(0.00141) (0.00140) (0.00166) (0.00106) (0.00112) (0.00128)
Observations 725,682 662,998 256,878 725,682 662,998 256,878

Panel C: Instrumental variables estimates: effect of drinking water pollution above standards on log mortality rate
Pollution above health standards 0.00920** 0.00966** 0.0161* 0.00406 0.00433 0.0158**

(0.00406) (0.00439) (0.00845) (0.00270) (0.00307) (0.00659)
Observations 725,682 662,998 256,878 725,682 662,998 534,176
First stage R-K F statistic 7.5 6.1 5.4 7.9 5.1 6.6

Panel D: LIML Instrumental variables estimates: effect of drinking water pollution above standards on log mortality rate
Pollution above health standards 0.00764** 0.00734** 0.00562 0.00476* 0.00514* 0.00451

(0.00323) (0.00334) (0.00390) (0.00264) (0.00303) (0.00358)
Observations 725,682 662,998 256,878 725,682 662,998 256,878

Panel E: Ordinary least squares regression of log mortality rate on pollution above health standards
Pollution above health standards 0.000121*** 0.000115*** 0.000144*** 0.0000680*** 0.0000683*** 0.0000787***

(0.0000397) (0.0000406) (0.0000506) (0.0000219) (0.0000210) (0.0000261)
Observations 725,682 662,998 256,878 725,682 662,998 256,878

Fixed effects:
  Zip code X X X X X X
  State × year X X X X X X
County controls X X
Years 1992-2019 X X
Weighted by population X X X

Appendix Table 15: Instrumental Variables Estimates of Drinking Water Pollution and Mortality Rates

Notes: each observation is a zip code × year. Data include years 2009-2019 except where otherwise noted. Mortality rate is deaths per 10,000 Medicare 
population; dependent variable is log mortality rate. Cumulative loans equals the cumulative number of drinking water loans a system has received. Log 
population is log of mean system population, averaged across systems in a zip code with weight equal to the system's over-65 population. County controls 
include cumulative Clean Water Act revolving fund loans; Clean Air Act nonattainment status for ozone and particulate matter; inverse hyperbolic sine of 
the number of Toxic Release Inventory plants; personal income per capita; unemployment rate; federally-reported violations in years 2006-2008 interacted 
with year fixed effects; opioid dispensing rate per 100 people (plus missing indicator); percent of population with health insurance; inverse hyperbolic sine 
of federal assistance and contracts. LIML uses count indicators for cumulative number of loans (1; 2; 3; etc.) as instruments for pollution. Standard errors 
clustered by drinking water system. Asterisks denote p-value < 0.10 (*), <0.05 (**), <0.01 (***). 
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