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A. Materials and Methods 
 
A.1 Model Choice, Design, and Assessment 

We use ResNet-18 for a few reasons. Given the sample size for training data, additional blocks in the model may not 5 
improve performance. We observed some signs of overfitting in training data for ResNet-18, suggesting that the model 
is sufficiently complex and implying that a more complex model could exacerbate overfitting. We experimented with 
multi-task learning across binary regulation and the nine hydrological and the nine legal types of waters (SM section 
A.4) but found it did not improve accuracy in the validation data. 

We also considered alternatives to ResNet but concluded they were unlikely to improve model performance. To 10 
improve model accuracy, meta-learning models may require substantially more data than we have. A foundation model 
would need to be pre-trained on large amounts of pre-existing data from a similar problem. In our setting, such data 
are not readily available. We experimented with a form of convolutional kernel ridge regression (37), a gradient 
boosting algorithm, and separate ResNet models for each rule, but found they did not have better validation accuracy 
than the model the main text uses. 15 

Permutation importance tests, discussed in the main text, have limitations. A feature that is highly correlated with 
others may appear unimportant when removed, since the model can rely on the unpermuted features to arrive at the 
same prediction. We try to mitigate this by permuting features in groups, such as all PRISM or all Gridded National 
Soil Survey Geographic Database (gNATSGO) layers. Permutation can also produce unrealistic model inputs that 
generate unpredictable model behavior. Combined with the case studies and maps, however, these tests can clarify 20 
WOTUS-ML’s functioning. 
 
A.2 Train-Test Split 

To prevent spatial leakage, we group data so AJDs in the same project or with geographically overlapping footprints 
are in the same fold. AJDs in the same project are evaluated by the same ACE engineer at the same time, so have 25 
correlated outcomes. Grouping by aerial imagery footprint ensures the test set does not partially include images and 
other input layers used to train the model.  
 
We seek to assign an 80/10/10 split between train, test, and validation, stratifying the randomization by district-rule 
to ensure the same split in every district and every rule. Because groups span rules and districts, however, and we 30 
have limited data for some district-rules, this ideal split is not feasible in our setting.  
 
We therefore adopt a splitting procedure that ensures we have sufficient data for testing and validation in all district-
rules while getting as close as possible to the 80/10/10 target. We assign all the data from district-rules with 50 or 
fewer observations to test. District-rules with 100 or fewer observations are split 80/20 between test and validation. 35 
For district-rules with 500 or fewer observations, we assign 50 observations to test, then split the remaining 
observations 80-20 between training and validation. After the small district-rules are assigned, we split the 
remaining groups 80/10/10 between training, validation, and testing. We repeat the randomization until every 
district-rule with over 500 observations has at least 100 training observations, and at least 5% of the observations in 
the validation and testing sets. The entire randomization is stratified at the district level.1 40 
 
The maximum number of points in a single image footprint group is 244. The average is 3.67, with a standard 
deviation of 8.53. 
 
A.3 Input data 45 
 
WOTUS-ML takes as inputs 34 layers from 11 distinct datasets (Table S3). These include imagery from the 
National Agriculture Imagery Program (NAIP); geographic data on the locations and characteristics of wetlands and 

                                                           
1 Groups of observations occasionally overlap districts. A total of 61 out of the 14,000 image footprints groups span 
more than one district, accounting for about 6% of our observations. In cases where a group is assigned to multiple 
splits, we re-assign it to a single split, with train taking precedence over test and validation and test taking 
precedence over validation. 
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streams from the National Wetlands Inventory (NWI) and National Hydrography Dataset (NHD); soil characteristics 
from the Gridded National Soil Survey Geographic Database; information on local climate from the PRISM Climate 50 
Group’s 30-year Normals; land cover from the National Land Cover Database (NLCD); elevation from USGS’s 
3DEP model; ecoregion classification (level IV) from the US EPA; distance to U.S. Army Corps of Engineers 
(ACE) district headquarters; and encodings for states, ACE regulatory districts, and WOTUS rules. Several input 
layers are available only in the contiguous US (CONUS), thus restricting our analysis to this region. 
 55 
While state and ACE district layers represent political rather than geophysical inputs, they have an important 
influence on what the CWA regulates. For example, if the St. Paul ACE district concludes that no wetlands are 
regulated, and the Wilmington ACE district concludes that all wetlands are regulated, the resulting AJDs have 
legally binding force and describe what the CWA regulates. Similarly, we include a layer for the distance of a site to 
the closest ACE headquarters because the probability of in-person visits decreases with this distance, and sites with 60 
in-person visits have higher probability of being regulated. One potential explanation is that field visits are more 
likely for sites nearer to an ACE office, and field visits may discover water resources (e.g., swales under tree cover) 
that a desk analysis is less likely to observe. Although CWA represents federal regulation, its management through 
ACE district offices implies that its implementation is to some extent sub-national. 
 65 
We rasterize all vector layers into 512x512 pixel tiles, where each pixel is 0.6 to 1.1 meters, to match the resolution 
of the NAIP imagery. For the input layers that are not natively in a raster or vector format (i.e., distance to ACE 
district headquarters and encodings for ACE districts, states, and WOTUS rules), we fill a 512x512 pixel raster with 
one value to make these layers conform to our convolutional neural network (CNN) architecture. For categorical 
data, such as the NLCD land cover classes or ACE districts, we use ordinal encoding. We assign numeric values 70 
such that similar classes or adjacent geographic areas are close together in numeric space (e.g., for states, we do not 
use federal information processing standards (FIPS) codes, but instead assign sequential numbers to neighboring 
states). After experimenting with one-hot encoding and observing that it had no impact on accuracy in the validation 
set, we elect to use ordinal encoding to avoid inputting an excessive number of layers into the CNN given the 
limited amount of training data (~150,000 observations) and computational cost of training a model with more input 75 
layers. We use one-hot encoding for the rules, so each rule has its own input layer.  
 
For the training data layers that contain information on built-up land (NAIP and NLCD), we use images from the 
most recent survey prior to each AJD to ensure that the model’s prediction is based on pre-AJD conditions rather 
than post-AJD development activity. We use the most recent survey available for the input layers corresponding to 80 
the four million prediction points across the country for which we predict regulatory probabilities. We exclude all 
AJD and prediction points that are missing input data, such as NAIP imagery or state information. All these 
excluded AJDs are in the oceans, Great Lakes, or military bases (e.g., Area 51).   

We highlight a few other notes on NHD and NWI. NHD describes 3.15 million stream miles in the CONUS. We 
define a sample point as in NHD or NWI if it is within 10 meters of those resources. Documentation for NHD’s high 85 
resolution version states that it distinguishes ephemeral from intermittent streams. We do not use the high-resolution 
NHD files given its incompleteness and measurement error. NHD high resolution’s distinction between ephemeral 
and intermittent streams appears in only a few western states; elsewhere, NHD classifies all streams as intermittent. 
Additionally, we found substantial differences between NHD’s classification of streams as intermittent or ephemeral 
and AJDs’ classification of the same streams as intermittent or ephemeral.  90 

NWI and NHD seek to identify water types of locations across the US. While this has similar outputs as the model, 
NWI and NHD alone provide insufficient information to determine whether a site is jurisdictional (7). For example, 
NWI identifies wetlands, but does not identify whether a wetland is abutting navigable waters or isolated, and thus 
does not identify if the wetlands are jurisdictional. Similarly, while the high resolution NHD identifies certain water 
resources as ephemeral (which would not be jurisdictional under NWPR), ACE may determine that some of those 95 
water resources are in fact intermittent and thus jurisdictional under NWPR. Additionally, NWI and NHD have 
imperfect measures, particularly for certain water types.  

These considerations lead us to use NWI and NHD as model inputs, since they provide useful but imperfect and 
incomplete information about regulatory probabilities. They may also affect the model’s accuracy. For example, if 
some future version of NHD and NWI had no errors, then those error-free inputs would provide more useful 100 
information for a model, and thus a model trained on perfect versions of NHD and NWI could have greater accuracy 
than WOTUS-ML.  
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At the same time, these considerations do not bear on our conclusions about model accuracy, reliability, or bias. Our 
estimates of accuracy and bias are conditional on the information available in the model inputs. Although using an 
NWI or NHD point alone may provide a biased estimate of regulatory probabilities, by using NWI, NHD, and many 105 
other inputs to flexibly predict legally-binding AJDs, the model obtains unbiased estimates of regulatory probabilities 
(Fig 2A). 

Because PJDs are not certain to be jurisdictional, we use the model to assess their probability of regulation, but do not 
train the model on PJDs. In other words, our data on PJDs do not affect model performance since the model is trained 
only on AJDs. After training WOTUS-ML, we compare predicted regulatory probabilities for PJDs versus other types 110 
of points. Sites with the highest probability of regulation may be more likely to request PJDs than AJDs, so AJDs may 
over-represent cases with ambiguous jurisdiction. We obtained details on PJDs from a Freedom of Information Act 
request filed with the EPA. 

A.4 Other data 

A few additional details on AJDs are useful to highlight. The ground-truth data include AJDs between August 2015 115 
and May 2022, obtained from the EPA (38, 39). Of these, 81,316 were made under Rapanos, 61,582 under NWPR, 
and 7,755 under CWR. Rapanos applied through 2018; CWR applied through late 2020, though only in about half of 
states due to litigation; NWPR applied through mid-2021; and Rapanos applied thereafter. For a small subset of AJDs, 
we can manually obtain a PDF document for each AJD with modest additional detail on other variables from ACE’s 
ORM2 database. A further subset of these PDF files includes idiosyncratic information from ACE engineers on what 120 
information the engineer gathered.  

The main text mentions that ACE engineers visit only some sites. An example of information gleaned from a site visit 
comes from a sand and gravel plant expansion in Northeast Ohio. An ACE engineer conducting an AJD field visit 
discovered “small drainage swales” potentially under tree cover connecting to jurisdictional waters and concluded the 
site was jurisdictional. This example has project identifier LRB-2015-01193. 125 

An AJD reports the water resource’s coordinates, whether the resource is jurisdictional, the rule under which the AJD 
was decided, the Cowardin code, the resource type, and a unique project identification code (e.g., different wetlands 
on a single housing development may have separate AJDs but the same project identifier), which we use to separate 
AJDs into test and training sets (SM section A.2). AJDs are valid for five years. About half of AJDs also incorporate 
site visits.  130 

ACE requests AJDs to list centroids of water resources. We scrutinized high-resolution satellite imagery around 20 
randomly selected AJDs on lakes and found that coordinates for about half of these water resources listed the centroids, 
while coordinates for the other half listed other locations around the water resource. Due to this focus and the model 
architecture used, we interpret WOTUS-ML as classifying individual points as regulated or not. Although WOTUS-
ML can output different regulatory probabilities inside versus outside water resources, it is better suited at identifying 135 
jurisdiction for a water resource overall than delineating wetland boundaries (e.g., ACE sometimes conducts wetland 
delineation, which seeks to identify the exact boundaries of a wetland feature).  

During the AJD process, ACE engineers also assign the water resource a Cowardin class and resource type. Cowardin 
classes are a hierarchical system for classifying wetland and water resources that capture the aquatic system, type of 
substrate, and water regime of the habitat (14). Resource types correspond to legal groupings of aquatic habitats, such 140 
as adjacent wetlands (those abutting a stream/river) or isolated wetlands (those that do not have a surface water 
connection) specified in each rule. Broad categories of Cowardin classes and resource types relate to different 
interpretations of WOTUS. For example, Rapanos regulates isolated wetlands and NWPR does not. 

The main text refers to areas where a land use model predicts development. We identify these areas using ICLUS, 
which provides a raster identifying areas with increasing urban development in the period 2020-2030 (24), which may 145 
be more likely to have future AJDs. Using ICLUS, we categorize each point into one of three levels of development. 
We define a point as undeveloped if it has any of the following ICLUS categories: natural water; reservoirs; canals; 
wetlands; recreation; conservation; timber; grazing; pasture; cropland; mining; or barren land. We define a point as 
semi-developed if it has any of the following ICLUS categories: exurban, low; suburban; urban, low; parks; or golf 
courses. We define a point as developed if it has any of the following ICLUS categories: exurban, high; urban high; 150 
commercial; industrial; institutional; or transportation. Finally, we define areas with increasing urban development as 
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those that ICLUS predicts move from undeveloped to semi-developed, semi-developed to developed, or undeveloped 
to developed, using the preceding definitions. 

Several parts of the paper and several datasets discuss isolated wetlands and ephemeral streams. These water features 
have different names and sub-types in different regions of the country, including prairie potholes, vernal pools, 155 
Carolina bays, playa lakes, alpine ponds, desert depressions, swale ponds, and others. 

WOTUS-ML observes differences across ACE districts and state boundaries. NAIP has some differences in collection 
methods across states. For example, the flying season for imagery collection can differ modestly across states, and 
photographic methods can also differ (40). The WOTUS-ML inputs include a state boundary layer, which helps 
account for differences in NAIP methodology across states. Differences in regulatory probabilities across ACE 160 
districts are salient in the unprocessed AJD data. 
 
The main text reports estimates of the difference in flood mitigation benefits and land values between Rapanos and 
NWPR. The range we report reflects homogeneous versus heterogeneous estimates of flood mitigation benefits and 
land values from other sources. Our homogeneous estimate uses the finding that the mean US wetland provides 165 
$1,840 to $1,900 per hectare in annual flood mitigation benefits (3). Aggregated, this represents $25 to $26 billion in 
annual US flood mitigation benefits, or $500 to $520 billion in present value flood mitigation benefits, discounted at 
5%. Heterogeneous estimates of flood mitigation values by population density (3), applied to our 4 million 
prediction points, imply that the mean wetland deregulated between Rapanos and NWPR has annual flood 
mitigation benefits of $1030/hectare. Aggregated, this heterogeneous estimate implies that these deregulated points 170 
represent $12 billion in annual flood mitigation benefits, or $250 billion in present value. The mean value of US 
wetlands is $12,700/acre (41). Using heterogeneous estimates of land values for each deregulated point (41), the 
mean wetland deregulated between Rapanos and NWPR has fair market value of $8,313/acre. Thus, the 
heterogeneous estimates imply the national land value of wetlands deregulated between Rapanos and NWPR is $249 
billion. The heterogeneous estimates of flood mitigation benefits and land values for deregulated wetlands are 175 
smaller than the homogeneous estimates for the mean US wetland because deregulated points are in less populated 
areas than the mean US point. 
 
A.5 Prediction points 
 180 
For prediction, we collect input data on three distinct samples of points in the CONUS. First, we collect 4.1 million 
points at random locations across the entire CONUS. To do this, we first divide the country into approximately 
80,000 0.1 degree by 0.1 degree grid cells. We then randomly sample 50 points in each cell. We choose sample sizes 
to support detailed maps and case studies. In practice, input data are not available for about 4% of the points we 
sample, so we generate predictions for a total of 3.94 million points. The large number of prediction points allows us 185 
to produce high-resolution maps, as in Fig. 3, as well as detailed case studies, as in Fig. 4. We additionally use the 
intersections of these points with areas of particular interest to produce the values in Table 1. In reporting aggregate 
statistics, the share of the four million prediction points in streams and wetlands that are jurisdictional approximates 
the share of wetland acres and stream miles that are jurisdictional.  
 190 
The second CONUS sample we collect covers about 3,000 points in a dense sample of approximately 2.7 km sq 
centered on the Sackett property near the shore of Priest Lake, Idaho. These points enable us to analyze in detail an 
area of particular interest as it lies as the center of the 2023 Supreme Court Sackett case. In addition, these points 
clarify how spatially precise our predictions are. 
 195 
Finally, we collect approximately 6,200 points along traditional navigable waters legally identified in Title 33 of the 
US code (23) and link them to corresponding flowline names in NHD. In line with EPA and ACE practice, we use 
“traditional navigable waters” to denote major waterways primarily used for navigation, sometimes called, 
“navigable-in-fact waters.” We select these points because they are regulated under every WOTUS rule, and thus are 
less likely to appear in our AJD training set. These points allow us to test our model’s out of sample performance on 200 
locations virtually certain to be jurisdictional.  
 
B Supplementary Text 
 
B.1 Model Accuracy and Potential Uses 205 
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To evaluate model performance, one metric is whether WOTUS-ML predictions are useful enough for different 
possible applications. The main text provides a few statistics that help assess the model’s potential usefulness, which 
we summarize here. For all AJDs, WOTUS-ML test set accuracy is 79%, reflecting learning of 14 percentage points. 
The corresponding Area Under the Receiver Operating Characteristic Curve (AUC) is 0.85. The ROC curve is 
plotted in Figure S7. AUC varies little by rule at 0.82, 0.86, and 0.87 for Rapanos, CWR, and NWPR respectively. 210 
Finally, WOTUS-ML scores provide an unbiased estimate of the probability that a site is regulated. 
Correspondingly, grid search for the optimal classification threshold returned 0.51. Relative to a threshold of 0.50, 
using a threshold of 0.51 would increase accuracy on the validation set by 0.013 percentage points (a hundredth of a 
percentage point); thus, we use a threshold of 0.50. 

For a developer, learning that a site’s WOTUS-ML score is below 0.07 or above 0.95 provides a strong signal, with 215 
over 95% accuracy, whether a site is jurisdictional. Many developers may find this information useful for 
investment and permitting decisions. For example, observing the WOTUS-ML prediction that a site is 95% likely to 
be regulated may lead a developer to request a PJD rather than an AJD, which can increase permitting efficiency. 
Sites with WOTUS-ML scores closer to 0.5 provide weaker signals for an individual site, since accuracy is lower for 
those score ranges, but may still provide useful inputs for some developer investment and permitting decisions. For 220 
ACE, having WOTUS-ML scores available could help to prioritize between sites where WOTUS-ML indicates 
jurisdiction is more certain, so the return to additional ACE effort is lower (or a field visit may be less needed), 
versus sites where WOTUS-ML scores are closer to 0.5, and where the return to ACE effort may be greater. 
WOTUS-ML could flag cases where an ACE decision differs substantially from the WOTUS-ML prediction, and 
which ACE could use to select cases for review. Additionally, WOTUS-ML scores could allow benchmarking or 225 
provide a training tool for new ACE engineers or provide a way of comparing practices across ACE districts. Under 
current practice, algorithms like WOTUS-ML alone cannot provide a legally-binding jurisdictional determination, 
but could provide a useful input to ACE’s decision process. 

For EPA, environmental, or industry associations, WOTUS-ML could help estimate the share of waters that are 
regulated under different rules, geographic areas, or water types. The unbiasedness described in Figure 2A is useful 230 
here, since it shows that while WOTUS-ML has imperfect accuracy for individual sites, these errors average out in 
large samples. 

Another metric to evaluate model performance is whether WOTUS-ML exceeds performance of available 
alternative tools. We are unaware, however, of any available alternative tools. We believe no other analyst in 
government, academia, or the private sector has constructed a model that predicts AJDs and has then evaluated the 235 
accuracy of this model. In this sense, a possible use of WOTUS-ML is to highlight the importance of this prediction 
problem and to provide a set of accuracy statistics upon which other, potential models may attempt to improve. 

We briefly discuss how WOTUS-ML differs between sites with and without a field visit. Under COVID-19 
lockdowns, some sites had a “visit, conducted virtually using remote tools,” primarily under NWPR, which we 
count as not having a site visit. The main text notes that test set accuracy is 82% for AJDs without a field visit and 240 
74% for AJDs with a field visit. The share regulated is 26% for AJDs without a field visit and 46% for AJDs with a 
field visit. Thus, learning is only 8 percentage points for sites without a field visit, but 20 percentage points for sites 
with a field visit. At the same time, the low regulatory probability for AJDs without a field visit overall (26%) gives 
less scope for model learning. 

Regulation and model learning differ for AJDs with a field visit for several reasons. On a field visit, ACE engineers 245 
can discover evidence of regulated waters that computer analysis misses, such as drainage swales under forest cover, 
plant species indicative of wetlands, or the location of the ordinary high-water mark. Additionally, much of the time 
when NWPR was operating occurred in 2020 and 2021 when travel was limited due to COVID-19. Hence field 
visits occurred more under Rapanos and CWR than under NWPR, and Rapanos and CWR regulate a larger share of 
waters. Finally, ACE engineers choose field visits purposefully, for more complex cases (39). 250 

WOTUS-ML has imperfect accuracy in part due to characteristics of the training data. AJDs (the training data) can 
have human error or reflect brief and uncommon environmental conditions (42, 43). Implementation varies; for 
example, ground-truth data reveal sharp regulatory differences around ACE district boundaries (Fig. S2), and 
individual engineers and field offices could vary further. After an AJD is finalized, landowners receive a form to 
request an appeal (44); the existence of this form implicitly acknowledges that AJDs can be incorrect. In-person visits 255 
for roughly half of AJDs provide information not available to train WOTUS-ML. In addition, most AJD PDFs note 
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that the decision reflects maps, data, photos, or other information provided by the applicant or an associated 
environmental consultant about the site, information which is unavailable to train WOTUS-ML.  
 
The main text explains how the permutation tests highlight which features most influence the model’s predicted 260 
probabilities. It is also informative to observe which features play less of a role. ACE documentation notes that soils, 
hydrology, and vegetation determination can play an important role in identifying wetlands (21). Our gNATSGO 
extract includes five types of categorical variables: soil taxonomic class; soil hydric rating; flooding frequency; 
ponding frequency; and water table depth variables, in addition to others (Table S3). Fig. S10 shows that gNATSGO 
is moderately important nationally and is the third-most important feature to determine which sites are jurisdictional 265 
within a state. For reasons discussed in SM section A.1, we permute features in groups, so we identify the 
importance of gNATSGO as a whole, but not the individual features of gNATSGO. Nonetheless, this would suggest 
that soil and hydrology variables play an important role in guiding WOTUS-ML’s predictions across sites within a 
state. One can similarly look at other permutation importance levels for Fig. S10, compare them to the individual 
variables listed in Table S3, and determine their relative importance levels. 270 
 
B.2 Data Sources 
 
To compare our data against the data sources that ACE engineers consult, we selected a random sample of 20 AJDs, 
obtained the PDF decisions for these AJDs from ACE’s ORM2 online database, and categorized the data sources 275 
used in these decisions.2 The five most commonly-used data sources were maps and data sheets submitted by the 
applicant and associated consultant (100% of sampled AJDs), aerial imagery (100%), topographic maps (90%), 
NWI (75%), and soil surveys (65%). The AJDs also report that other data sources are less widely used, including 
ACE’s Antecedent Precipitation Tool (30%). HUC maps (25%), NHD (20%), LiDAR (20%), state/local flood maps 
(15%), FERA/FIRM maps (10%), ACE data sheets (5%), and ACE navigable waters studies (5%). Apart from the 280 
applicant materials, which have unspecified data sources, our data cover aerial imagery via NAIP, topographic maps 
via the DEM, NWI, and soil surveys via gNATSGO.  
 
Observing that many AJDs use a dataset does not indicate that the dataset most influences decisions. Nonetheless, 
we note that NWI and gNATSGO are the most important for WOTUS-ML decisions within a state in Fig. S10, and 285 
are among the most commonly used data sources in these AJDs. We also note the contrast that aerial imagery is used 
in 100% of these AJDs, but NAIP is much less important in Fig. S10. One potential reason for this is that much of 
the information in NAIP may already be in our other datasets, some of which ACE does not directly consult (e.g., 
ecoregions, PRISM, and NLCD). 
 290 
B.3 Decision Model and Cost Savings 
 
WOTUS-ML can support several parts of the CWA Section 404 process. At decision (a) in Fig. S1, WOTUS-ML 
scores can give the developer information that helps decide whether to hire a consultant, develop while ignoring 
WOTUS, or stop development. At (b), WOTUS-ML could give ACE and EPA potential signals for prioritizing 295 
potential enforcement cases. At (c), WOTUS-ML could give a developer and consultant useful information about 
deciding between PJDs, AJDs, development, or non-development. At (d), WOTUS-ML as a decision support tool 
could give ACE useful information about the estimated probability an AJD is regulated.  

We can use this cost to provide an estimate of one component of WOTUS-ML’s value, at decision node (c). Because 
this only includes one component of WOTUS-ML’s informational value at this decision node, and since WOTUS-300 
ML has potential value at other decision nodes, it may provide a lower bound on the value of WOTUS-ML to 
stakeholders. 

Specifically, Fig. 2A shows that for 27% of AJDs, WOTUS-ML provides greater than 95% certainty about whether 
a site is jurisdictional. For these sites, requesting an AJD is more likely to be an error, since a PJD or development 
without permit are alternatives. The expected cost of the error depends on the number of decisions at each part of the 305 
tree and the costs of the other components, most of which are unknown. In the absence of this data, we can obtain 
one ballpark number from EPA and ACE’s (2) estimate that each Section 404 permit costs $5,000 to $39,000, 
representing S in the decision tree. We are unaware of estimates for the cost of AJDs (A), but these estimates of the 
permit (S) cost provide a plausible starting estimate. If anything, AJD costs might exceed this amount since an 

                                                           
2 This sample excluded AJDs missing PDFs or AJDs corresponding to more than one PDF in ORM2. 
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environmental consultant alone can exceed this amount, and then AJDs create additional costs due to delay, 310 
uncertainty, and resulting changes to project design. 

B.4 External Validity 

This paper asks what the CWA regulates, using data over the period 2015-2022. In this sense, predicting CWA 
jurisdiction in distant future years is not our primary focus. At the same time, for stakeholders, it may be useful to 
understand the external validity of WOTUS-ML to Sackett or future regulation. Given that WOTUS-ML inputs 315 
include non-geophysical layers like state boundaries, ACE district boundaries, and distance to a field office, it is 
unclear how district-specific policies could change over time. The state boundaries with the sharpest regulatory 
discontinuities in maps like Fig. 3A also lie on ACE district boundaries. Except for the few states which have 
deregulated AJD determination, our sense is that ACE districts rather than states provide the most important 
heterogeneity. Additionally, the importance of PRISM climate data and our use of 30-year climate normals could 320 
mean that climate change would affect future predictive accuracy. 

We believe that five and possibly ten future years is the most relevant period for stakeholders. In part this is because 
AJDs are valid for five years, because a developer who requests an AJD is likely to develop promptly, and because 
CWA rules in the last decade have changed frequently. For policymakers, federal budget scoring often considers ten 
years.  325 
 
Our cautious assessment is that conditional on rule changes, WOTUS-ML is likely to have good external validity for 
five to ten years. Given the new Sackett rule beginning in late 2023, one could train WOTUS-ML in 2024 or later on 
Sackett AJDs, and then we would expect similar external validity. External validity is more difficult to assess 
beyond that period. The WOTUS-ML training data covers the eight-year period from 2015 to 2022, which is a 330 
similar duration as a five- to ten- year prediction. The role of PRISM in prediction occurs despite the presence of 
climate change in this period, and our sense is that the PRISM data are highlighting cross-sectional variation in 
deserts, moisture, heat, and other features that will be broadly similar in the next 5-10 years. If ACE district 
jurisdictional practices or climate substantially changed after several future years, one could always train a new 
version of WOTUS-ML on newer data or update the model inputs, although that possibility does not shed light on 335 
the relevance of the current WOTUS-ML for predicting future jurisdiction.  
 
We have asked policymakers why ACE district practices differ, since answering this question could help assess the 
persistence of these patterns. We do not have a single clear answer. While ACE seeks to harmonize AJD criteria 
across districts, ACE regulatory practices are more decentralized than some federal agencies. Some ACE districts 340 
and regions have supplements to the ACE handbook that guide specific aspects of AJDs for local terrain. We also 
emphasize that ACE district staff are not federal political appointees, and while ACE district leaders have influence, 
one might expect less variation in ACE district priorities over time than occurs among some federal agencies where 
presidential appointees change regularly. 
 345 
We also train a separate deep learning model, AJD-ML, which helps us study WOTUS-ML’s external validity. AJD-
ML predicts the probability that an arbitrary location has an AJD. By contrast, WOTUS-ML predicts the probability 
that an AJD for a location concludes that the location has jurisdictional waters. In other words, AJD-ML and 
WOTUS-ML have two main differences: AJD-ML predicts the probability a point has an AJD while WOTUS-ML 
predicts the probability that an AJD is jurisdictional; and AJD-ML is trained on both AJDs and non-AJD locations, 350 
while WOTUS-ML is only trained on AJDs. 
 
Apart from these differences, AJD-ML and WOTUS-ML are similar. They have identical model architecture, 
training, and train-validation-test split procedure. The input data are identical except that AJD-ML does not include 
a WOTUS rule layer. In other words, to predict which points have AJDs in AJD-ML, we use aerial imagery, maps 355 
of streams and wetlands, soil quality and groundwater information, a digital elevation model, land use data, etc. To 
train and evaluate AJD-ML, we use all AJD points and 152,201 of our four million prediction points. We randomly 
choose these prediction points, subject to not overlapping with any AJD. We train AJD-ML for 11 epochs. AJD-
ML’s test set accuracy is 92.7%.  
 360 
Fig. S8 compares WOTUS-ML accuracy across deciles of AJD-ML probabilities. In other words, it investigates how 
accurately we can predict whether a given location is jurisdictional under the CWA (WOTUS-ML model), 
separately for points that are more versus less likely to have an AJD (AJD-ML model). In the top panel, the 
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horizontal axis shows bins indexing the probability that a given point has an AJD. These bins represent fitted 
probabilities from the AJD-ML model. The vertical axis shows WOTUS-ML’s accuracy in each bin (blue triangles), 365 
measured using all AJDs; and the vertical axis also shows the share of AJDs in each bin that ACE determines to be 
jurisdictional (green circles).  
 
Our main finding from Fig. S8 is that WOTUS-ML has similar accuracy of about 80% for both locations that look 
very much and very little like a typical AJD. We obtain this finding from the observation that the blue triangles in 370 
the top panel have flat slope horizontally, at a value near 0.8 on the y-axis. WOTUS-ML’s accuracy is similar for 
sites that have characteristics typical of AJDs, on the graph’s right side, as for sites that have characteristics atypical 
for AJDs, on the graph’s left side.  
 
This finding that WOTUS-ML’s accuracy is similar for points that do and do not look like a typical AJD helps 375 
increase confidence in our headline conclusions about the share of all US wetlands and streams that are 
jurisdictional. One might have the concern that the wetlands and stream sites which have AJDs are larger, more 
complex, more ambiguous, or for some other reason different than the mean US wetland or stream. This concern 
could imply that WOTUS-ML has good accuracy on the kinds of sites on which WOTUS-ML is mostly trained – 
sites that look like a typical AJD – but not on other kinds of sites. This concern could therefore imply that our 380 
statistics on accuracy and jurisdiction of WOTUS-ML might not extrapolate well to all US streams and wetlands. 
Fig. S8 does not support this concern, and instead suggests that WOTUS-ML has similar accuracy for all types of 
points, and not only those that look like a typical AJD. It therefore suggests that we can reasonably use WOTUS-ML 
to assess the share of all streams and wetlands nationally that are jurisdictional, even including streams and wetlands 
with different characteristics than most AJDs. 385 
 
B.5 Sackett 
In May 2023, the Supreme Court issued a decision in Sackett (45). In August 2023, the EPA issued a final rule 
which conforms to Sackett (46). Sackett strikes down the significant nexus standard, and excludes interstate 
wetlands and wetlands separated from jurisdictional waters by a man-made dike or barrier, natural river berm, beach 390 
dune, or the like. Formally, the EPA’s August 2023 rule modifies the January 2023 rule issued under the Biden 
administration, which is similar to Rapanos, rather than modifying NWPR. Sackett and the Sackett rule focus on 
changing the significant nexus standard but focus less on the relatively permanent standard.  
 
We here discuss two potential ways to quantify what Sackett regulates. This paper trains a machine learning model 395 
on past AJDs issued under a given rule. This is infeasible for Sackett in the near term since the EPA has just issued 
the Sackett rule. It will take time for many Sackett AJDs to be issued. The recent history of CWA regulation also has 
had numerous delays and obstacles to changing CWA rules and implementing new rules. It is possible that 
procedural delays could slow implementation of the Sackett rule. 
 400 
A possible alternative strategy to quantify what Sackett regulates, which differs from the methodology applied in the 
rest of the paper, would be a relabeling technique. Because the EPA’s Sackett rule modifies the January 2023 rule, 
which is very similar to Rapanos, this methodology would identify which past AJDs already completed under 
Rapanos would lose jurisdiction under Sackett. This relabeling technique would then construct a synthetic dataset of 
Sackett AJDs by changing the labels (the jurisdictional outcomes) for the AJDs that would lose jurisdiction in 405 
Sackett relative to Rapanos. Applying this relabeling methodology would then train WOTUS-ML on this relabeled 
set of AJDs, and predict jurisdiction for the 4 million and other points. These points would describe a prediction of 
what Sackett regulates. 
 
While we investigated the potential of this relabeling methodology in detail, we do not implement it here because we 410 
believe that without Sackett AJDs for training a model, it is difficult to implement it with sufficient accuracy. 
Specifically, the construction of the Sackett rule makes it difficult to conclusively identify which Rapanos AJDs 
would lose jurisdiction under Sackett. The Sackett rule removes the significant nexus standard for several legal 
categories of waters identified in the January 2023 rule. The legal categories of waters identified in Rapanos AJDs 
(formally, called “resource types” in the AJD data) differ from the legal categories of waters listed in the January 415 
2023 rule. Thus, determining which Rapanos AJDs would lose jurisdiction under Sackett depends on a match in 
legal water categories between the two rules. More importantly, for several legal categories of waters in the January 
2023 rule, Sackett’s removal of the significant nexus standard deregulates some but not all waters in the category. 
Within a category, the Rapanos AJDs alone have insufficient information both about what share and which AJDs 
would lose jurisdiction under Rapanos. 420 
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Fig. S1: A Decision Tree Clarifies the Process of Development and Jurisdictional Determinations and Shows 
Potential Uses of WOTUS-ML. Each box describes an intermediate decision and each oval describes a potential 
terminal outcome. Branches and decision nodes are in blue and lowercase, costs and payoffs are in capital red. At 
(a), the developer chooses whether to develop while ignoring the CWA, hire an environmental consultant to support 
the CWA Section 404 process, or not develop. If the project proceeds assuming jurisdictional Waters of the United 
States (WOTUS) are not present, at (b), ACE and EPA may discover the development, conclude WOTUS are 
present, and require restoring the site to its original conditions and imposing a fine. At (c), the developer and an 
environmental consultant may provide a PJD, request an AJD, proceed ignoring WOTUS, or not develop. At (d), 
ACE determines whether the AJD is WOTUS. If the AJD is not WOTUS, development occurs. At (e), if the AJD is 
WOTUS, the developer may obtain a Section 404 permit and develop or may stop development. AJD are approved 
jurisdictional determinations, PJD are preliminary jurisdictional determinations, and WOTUS are Waters of the 
United States. The model shows common sequences but abstracts from others (e.g., a developer could provide a PJD 
without a consultant, and might provide a PJD but not develop the project). Payoff variables are follows: C is cost of 
hiring an environmental consultant; P is cost of obtaining a PJD, including paperwork, delays, and uncertainty; A is 
cost of obtaining an AJD, including paperwork, delays, and uncertainty; S is cost of obtaining and complying with a 
Section 404 nationwide or individual permit, including mitigation, compensatory measures, or constraints on 
development; D is payoff from development; and V is fines and other costs due to violating CWA Section 404. 
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A AJDs, all rules         

 

B AJDs, Rapanos      C AJDs, CWR 
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D AJDs, NWPR  

  

Fig. S2: AJDs (Training Data), by Rule. (A) All AJDs. (B) AJDs decided under Rapanos. (C) AJDs decided under 
CWR. (D) AJDs decided under NWPR. Green dots represent jurisdictional sites; brown dots represent non-
jurisdictional sites. 
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Fig. S3: Train, validation and test assignment. Train points are in green, validation points in brown, and test points 
in blue. Black lines show ACE district boundaries. We plot the validation and test sets on top of the train set.  
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A National Agricultural Imagery Program  B National Hydrography Dataset 

  

C Gridded National Soil Survey   D National Wetlands Inventory 

Geographic Database 

 

 

 

 

 

 

 

 

E National Land Cover Database  F PRISM 

  

 

Fig. S4: Maps of six input layers. (A) shows NAIP imagery. (B) shows NHD flowlines, where darker colors represent 
streams that flow more directly into oceans or great lakes (stream order). (C) shows soil taxonomic class from 
gNATSGO. (D) shows NWI polygons. (E) shows land cover. (F) shows precipitation patterns from PRISM.
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Fig. S5. Sample Inputs for One Site. Fig S5 depicts the 34 input layers for WOTUS-ML (see Table S3 for 
details). The location shown here is associated with an Approved Jurisdictional Determination (AJD) located at -
121.795E, 39.734N in Butte County, California. The nearest water body is Dead Horse Slough, which flows into the 
Traditional Navigable Water (TNW) Little Chico Creek. The National Agriculture Imagery Program (NAIP) imagery 
shows that the site includes an undeveloped lot besides a waterbody with adjacent wetlands. The National Wetlands 
Inventory (NWI) shows three types of wetlands at this location: Riverine (light blue), Freshwater Emergent Wetlands 
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(light green), and Freshwater Forested/Shrub Wetland (dark green). The National Land Cover Database (NLCD) layer 
includes open space (pink), developed land (red), and grasslands (tan). 3DEP shows that elevation ranges from 73m 
in the streambed to 78m in the field. The water feature appears in the National Hydrography Dataset (NHD) layer as 
an intermittent stream (FCode 46003). WOTUS-ML also inputs soil characteristics in the gridded National Soil Survey 
Gridded Database (gNATSGO) layers, information on climate in the PRISM layers, and geographic variables such as 
state, ecoregion, and U.S. Army Corps of Engineers (ACE) district. Finally, the model includes a one-hot encoding 
for each WOTUS rule: Rapanos, the Clean Water Rule (CWR), or the Navigable Waters Protection Rule (NWPR). 
This site was determined to be jurisdictional under Rapanos. WOTUS-ML assigns this site a score (i.e., probability 
of being jurisdictional) of 96% under Rapanos.  
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A Rapanos, AJD Test Set             B Rapanos, Four Million Prediction Points 

   
   
C CWR, AJD Test Set    D CWR, Four Million Prediction Points 

   
 
E NWPR, AJD Test Set    F NWPR, Four Million Prediction Points 

   
Fig. S6: Histograms of WOTUS-ML Scores for AJD Test Set and Four Million Prediction Points, By Rule. 
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Fig S7: WOTUS-ML achieves an AUC of 0.85. The Receiver Operator Characteristic (ROC) curve is plotted by 
calculating false positive and false negative rates for various classification thresholds. The Area Under the ROC Curve 
(AUC) is the integral of the ROC curve along the x-axis. 
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Fig. S8: WOTUS-ML Accuracy is Not Correlated with Predicted AJD Probability. Predicted AJD probabilities 
are merged with WOTUS-ML predictions, then WOTUS-ML accuracy is calculated for each 10 percentage point bin 
of predicted AJD probability. The WOTUS-ML accuracy for each bin is plotted as a blue triangle. We find no 
correlation between WOTUS-ML accuracy and predicted AJD probability. We also plot the share of AJDs in each bin 
that are WOTUS as green circles. We find a weak positive correlation between the predicted probability of being an 
AJD and the probability of being WOTUS. The bottom panel shows histograms of the distribution of predicted AJD 
probabilities for the AJDs and the sampled prediction points. Note that this figure includes points from all folds 
(training, validation, and test) to maximize the number of observations in each bin. The test set only (not shown) has 
a similar horizontal pattern, though with more variance given the smaller sample. This has little effect on interpretation 
because WOTUS-ML and AJD-ML both exhibit minimal overfitting. 
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A Left Tail Accuracy    B Right Tail Accuracy 

  

C Left Tail Share    D Right Tail Share 

     

Fig. S9: Cumulative Shares and Accuracy in AJD Test Set. The x-axis in (A) lists threshold predicted regulatory 
probabilities such that for test set AJDs below each threshold, WOTUS-ML has accuracy of 99%, 95%, 90%, or 85%. 
(B) is similar but calculates accuracy for AJDs above each threshold. (C) calculates the cumulative share of test set 
AJDs in the test set with predicted regulatory probability below the thresholds identified in (A). (D) is similar but 
calculates the cumulative share of test set AJDs above each threshold. Summing the y-axis values in (C) and (D) gives 
the y-axis in Fig. 2A. 
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Fig. S10: Permutation Tests of WOTUS-ML Feature Importance. Features are permuted across samples in 
validation set (A) nationally and (B) within each state. The datasets represent the following information: NAIP is 
imagery, NWI and NHD are wetlands and streams, DEM is elevation, NLCD is land cover, PRISM is climate, and 
gNATSGO is soil and groundwater. 
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Table S1: Categorization of Nine Hydrological (Cowardin) Codes  
    
Cowardin code Description 

1. Streams, ephemeral 
A wetland, spring, stream, river, pond or lake that only 
exists for a short period 

2. Streams, intermittent Intermittent, Riverine; Streambed, Intermittent, Riverine 

3. Streams, perennial and other 
Upper Perennial, Riverine; Lower Perennial, Riverine; 
Unknown Perennial, Riverine 

4. Wetland, emergent 
Emergent, Palustrine; Persistent, Emergent, Palustrine; 
Nonpersistent, Emergent, Palustrine 

5. Wetland, forested 

Forested, Palustrine; Broad-Leaved Deciduous, Forested, 
Palustrine; Needle-Leaved Evergreen, Forested, 
Palustrine"; Needle-Leaved Deciduous, Forested, 
Palustrine; Broad-Leaved Evergreen, Forested, 
Palustrine; Indeterminate Deciduous, Forested, 
Palustrine 

6. Wetland, other All other palustrine 
7. Estuaries Estuarine 
8. Uplands Uplands 
9. Other Marine, lacustrine, riparian 
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Table S2: Categorization of Nine Resource Types. RPW, relatively permanent waters; TNW, 
territorial national waters.  
  Rapanos CWR NWPR  

1. Ephemeral 

    

(b)(3) Ephemeral 
feature, including an 

ephemeral stream, 
swale, gully, rill, or pool 

 

2. Isolated Isolated (interstate or 
intrastate) waters   (b)(1) 

 

3. Non-RPW that 
flows directly or 
indirectly into TNW 

Non-RPW that flows 
directly or indirectly into 

TNW     

 

4. Other non-
jurisdictional 

  

(b)(1), (b)(2), 
(b)(3)(i), 

(b)(3)(ii), 
(b)(3)(iii), 

(b)(4)(v), (b)(5), 
(b)(7), (b)(4)(iii), 

(b)(4)(iv), 
(b)(4)(ii), 
(b)(4)(i), 

(b)(4)(vi), (b)(6), 
(b)(4)(vii) 

(b)(2), (b)(4), (b)(5), 
(b)(6), (b)(7), (b)(8), 

(b)(9), (b)(10), (b)(11), 
(b)(12), the review area 
is comprised entirely of 

dry land  

 

5. Other 
jurisdictional   

(a)(4), (a)(7), 
(a)(8) (a)(3) 

 

6. RPW that flows 
directly or 
indirectly into TNW 

Relatively Permanent Water 
that flows directly or 

indirectly into Traditional 
Navigable Water (a)(5) (a)(2) 

 

7. TNW 
Traditional Navigable 

Water (a)(1), (a)(2) (a)(1) 
 

8. Uplands Uplands Uplands    

9. Wetlands and 
adjacent/abutting 
regulated waters 

Wetlands Directly Abutting 
RPW that flows directly or 

indirectly into TNW; 
Wetland Adjacent to Non-
RPW that flows directly or 

indirectly into TNW; 
Wetlands Adjacent but not 

Directly Abutting RPW that 
flows directly or indirectly 

intoTNW; Wetlands 
Adjacent to TNW (a)(6) (a)(4) 
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Table S3: Datasets to Support Predictions of Jurisdictional Waters.        

Dataset Input layer Variable definition  
Data 
type 

Spatial 
Resolution 

Source 

National Agriculture 
Imagery Program 
(NAIP) 

Red band Red channel visible light 

Raster 
0.6 to 1.0 
meters 

(15) 
Blue   Blue channel visible light 

Green  Green channel visible light 

NIR Near-infrared light 

National Wetlands 
Inventory (NWI) 

Wetland type 

NWI wetland types: Estuarine and 
Marine Deepwater, Estuarine and 
Marine Wetland, Freshwater 
Emergent Wetland, Freshwater 
Forested/Shrub Wetland, Freshwater 
Pond, Lake, Riverine, Other 

Vector 1:250,000 (19) 

National Hydrography 
Dataset (NHD) Plus 
V2 

FCode 
Water feature type (e.g. perennial 
stream, intermittent stream, 
coastline) 

Vector 1:100,000 (17) 

Path length NHD flowline distance  

High flow 

Maximum flow for this water 
segment over a sequential 3-month 
period, using NHD Value Added 
Attributes Enhanced Runoff Method 
(EROM) long-term mean flow 
estimates for each month. 

Low flow 
Minimum flow for this water 
segment over a sequential 3-month 
period, using EROM. 

Stream order 
Hierarchy of streams from the 
source (or headwaters) downstream  

USGS 3-Dimensional 
Elevation Program 
(3DEP) 

Elevation Height above sea-level  Raster 10 meters (30)  

U.S. EPA Ecoregions 
Level IV 
Ecoregion 

Ecoregions are areas where 
ecosystems (and the type, quality, 
and quantity of natural resources) 
are generally similar. There are 967 
level IV ecoregions in the United 
States.  

Vector 1:250,000 (31) 

Continued next page           
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Dataset Input layer Variable definition  
Data 
type 

Spatial 
Resolution 

Source 

Parameter-elevation 
Regressions on 
Independent Slopes 
Model (PRISM) 30-
year Normals 

Precipitation Average annual total precipitation 

Raster 4 kilometers (32) 

 Minimum 
temperature 

Daily minimum temperature, 
averaged over 1990-2021 

  Maximum 
temperature 

Daily maximum temperature, 
averaged over 1990-2021 

  Mean 
temperature 

Daily mean temperature, averaged 
over 1990-2021 

  
Mean dew 
point 
temperature 

Daily mean dew point temperature 
(the temperature to which air must 
be cooled to become saturated with 
water vapor), averaged over 1990-
2021 

  
Minimum 
vapor pressure 
deficit (VPD) 

Minimum VPD (difference between 
the amount of moisture in the air 
and how much moisture the air can 
hold), averaged over 1990-2021 

  
Maximum 
vapor pressure 
deficit (VPD) 

Maximum VPD (difference 
between the amount of moisture in 
the air and how much moisture the 
air can hold), averaged over 1990-
2021 

  
Solar radiation 
(clear sky) 

Total daily global shortwave solar 
radiation received on a horizontal 
surface, averaged over 1990-2021 

  
Solar radiation 
(total) 

Total solar radiation incident on a 
horizontal surface), averaged over 
1990-2021 

  
Cloudiness 

Atmospheric transmittance 
(cloudiness), averaged over 1990-
2021 

U.S. Army Corps 
Regulatory Boundaries 

District codes 
Each ACE district is assigned a 
unique value.  

Point 1:250,000 (20) 
Distance to 
headquarters 

We calculate the distance from each 
point to the district headquarters.   

Continued next page           
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Dataset Input layer Variable definition  
Data 
type 

Spatial 
Resolution 

Source 

Gridded National Soil 
Survey Geographic 
Database (gNATSGO) 

Taxonomic 
class 

The Soil Taxonomy subgroup and 
family for a soil.   

Raster 30 meters (16) 

Hydric rating Is the map unit “hydric soil”?  

Flooding 
frequency 

The annual probability of a flood 
event expressed as a class. 

Ponding 
frequency 

The number of times ponding 
occurs over a year 

Water table 
depth   

The shallowest depth to a wet soil 
layer 

National Land Cover 
Database (NLCD) 

Landcover 

The NLCD has 20 land cover 
classes: Open water, ice/snow, four 
classes of developed land (open, 
low, medium, and high), barren, 
three forest classes (evergreen, 
deciduous, mixed), two scrub 
classes (dwarf, shrub), four 
herbaceous classes (grassland, 
sedge, moss, lichen), two 
agricultural classes (pasture/hay, 
cultivated), and two wetland 
classes (woody, emergent 
herbaceous)  

Raster 30 meters (33) 

Topologically 
Integrated Geographic 
Encoding and 
Referencing System 
(TIGER)/Line State 
boundaries 

State codes 
Each state is assigned a unique 
value  

Vector 1:250,000 (34) 

CWA Approved 
Jurisdictional 
Determinations 

WOTUS rule  
Three WOTUS rules: Rapanos, 
CWR, NWPR 

Point -- (38) 
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Table S4: Accuracy of WOTUS-ML Model Predictions, All Rules. Statistics describe the AJD 
test set. Column (1) shows the share that USACE determines to be regulated. Column (2) shows 
the share that WOTUS-ML predicts to have score above 0.5. Column (3) shows the share that 
WOTUS-ML correctly classifies as regulated. Column (4) shows the number of test set AJDs. 
Field visit indicators and Cowardin codes are from the AJD data. NWI and NHD include points 
within 5-10 meters of these vector data. (E) shows five ACE districts selected to represent districts 
with among the largest or smallest numbers of AJDs, and to show geographically heterogeneous 
districts.  

  
AJDs: 

regulated 
WOTUS-ML: 

score > 0.5 Accuracy N 
  (1) (2) (3) (4) 

A General groups of points         

 All AJDs 0.35 0.29 0.79 15,970 

 USACE field visit 0.46 0.38 0.74 7,198 

 USACE no field visit 0.26 0.21 0.82 8,772 

          

B By Cowardin Codes         

 All rivers and streams (riverine) 0.43 0.31 0.78 4,353 

 Wetlands (palustrine) 0.38 0.28 0.77 8,203 

 Uplands 0.00 0.17 0.83 2,529 

 Estuaries (estuarine) 0.99 0.94 0.94 304 

 Lakes (lacustrine) 0.39 0.30 0.81 352 

          

C By Vector Data Overlay         

 All rivers and streams (NHD) 0.71 0.75 0.77 768 

 All wetlands (NWI) 0.53 0.45 0.75 2,247 

          

D By year         

  2016 0.52 0.46 0.77 1,731 

  2017 0.41 0.40 0.82 1,255 

  2018 0.34 0.32 0.80 1,580 

  2019 0.38 0.37 0.76 2,067 

  2020 0.31 0.22 0.79 3,816 

  2021 0.25 0.16 0.79 3,982 

  2022 0.43 0.39 0.75 918 

          

E Selected USACE Districts         

 Albuquerque 0.13 0.05 0.86 100 

 Charleston 0.51 0.44 0.73 935 

 Philadelphia 0.62 0.69 0.69 124 

 St. Paul 0.02 0.01 0.98 1,296 

 Wilmington 0.78 0.84 0.79 868 
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Table S5. Confusion Matrix. For each panel, table entries show share of 
test set AJDs in each cell. Top-left cell within a panel represents true 
positives, bottom-right represents true negatives, and top-right and 
bottom-left represent false positives and false negatives. Share of true 
positives plus true negatives equals accuracy. 

 
 
 
  

    AJDs: Test set outcomes  

    Regulated 
Not 

regulated 
 

    (1) (2)  

A All rules       

  WOTUS-ML Prediction      

  Regulated 0.22 0.08  

  Not regulated 0.14 0.57  

         

B Rapanos      

  WOTUS-ML Prediction      

  Regulated 0.29 0.09  

  Not regulated 0.13 0.50  

         

C CWR        

  WOTUS-ML Prediction      

  Regulated 0.29 0.12  

  Not regulated 0.11 0.48  

         

D NWPR        

  WOTUS-ML Prediction      

  Regulated 0.11 0.05  

  Not regulated 0.16 0.69  
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Table S6: Accuracy of WOTUS-ML Model Predictions, Rapanos. Statistics describe the AJD 
test set. Column (1) shows the share that USACE determines to be regulated. Column (2) shows the 
share that WOTUS-ML predicts to have score above 0.5. Column (3) shows the share that WOTUS-
ML correctly classifies as regulated. Column (4) shows the number of test set AJDs. Field visit 
indicators and Cowardin codes are from the AJD data. NWI and NHD include points within 5-10 
meters of these vector data. (E) shows five ACE districts selected to represent districts with among 
the largest or smallest numbers of AJDs, and to show geographically heterogeneous districts. 

  
AJDs: 

regulated 
WOTUS-ML: 

score > 0.5 Accuracy N 

  (1) (2) (3) (4) 

A General groups of points         

 All AJDs 0.41 0.37 0.78 8,198 

 USACE field visit 0.53 0.49 0.76 4,011 

 USACE no field visit 0.30 0.26 0.80 4,187 

          

B By Cowardin Codes         

 All rivers and streams (riverine) 0.67 0.54 0.80 1,425 

 Wetlands (palustrine) 0.47 0.36 0.76 4,199 

 Uplands 0.00 0.19 0.81 2,059 

 Estuaries (estuarine) 1.00 0.96 0.96 236 

 Lakes (lacustrine) 0.59 0.49 0.77 156 

          

C By Vector Data Overlay         

 All rivers and streams (NHD) 0.79 0.87 0.84 370 

 All wetlands (NWI) 0.61 0.55 0.76 1,285 

          

D By year         

  2016 0.52 0.46 0.77 1,731 

  2017 0.41 0.40 0.82 1,255 

  2018 0.32 0.30 0.83 1,260 

  2019 0.39 0.34 0.75 1,217 

  2020 0.38 0.35 0.82 902 

  2021 0.35 0.31 0.71 597 

  2022 0.43 0.39 0.75 918 

          

E Selected USACE Districts         

 Albuquerque 0.26 0.11 0.72 47 

 Charleston 0.65 0.66 0.77 542 

 Philadelphia 0.48 0.79 0.69 42 

 St. Paul 0.04 0.01 0.97 618 

 Wilmington 0.85 0.93 0.84 610 
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Table S7: Accuracy of WOTUS-ML Model Predictions, NWPR. Statistics describe the AJD test 
set. Column (1) shows the share that USACE determines to be regulated. Column (2) shows the 
share that WOTUS-ML predicts to have score above 0.5. Column (3) shows the share that WOTUS-
ML correctly classifies as regulated. Column (4) shows the number of test set AJDs. Field visit 
indicators and Cowardin codes are from the AJD data. NWI and NHD include points within 5-10 
meters of these vector data. (E) shows five ACE districts selected to represent districts with among 
the largest or smallest numbers of AJDs, and to show geographically heterogeneous districts. 

  
AJDs: 

regulated 
WOTUS-ML: 

score > 0.5 Accuracy N 

  (1) (2) (3) (4) 

A General groups of points         

 All AJDs 0.26 0.15 0.79 6299 

 USACE field visit 0.33 0.16 0.71 2478 

 USACE no field visit 0.21 0.15 0.85 3821 

          

B By Cowardin Codes         

 Rivers and streams (riverine) 0.30 0.15 0.77 2467 

 Wetlands (palustrine) 0.26 0.16 0.80 3345 

 Uplands 0.00 0.09 0.91 240 

 Estuaries (estuarine) 0.88 0.79 0.73 33 

 Lakes (lacustrine) 0.10 0.05 0.90 129 

          

C By Vector Data Overlay         

 All rivers and streams (NHD) 0.60 0.60 0.68 329 

 All wetlands (NWI) 0.38 0.24 0.73 798 

          

D By year         

  2020 0.29 0.18 0.78 2914 

  2021 0.24 0.13 0.80 3385 

          

E Selected USACE Districts         

 Albuquerque 0.00 0.00 1.00 46 
 Charleston 0.33 0.14 0.67 366 
 Philadelphia 0.63 0.47 0.67 49 
 St. Paul 0.02 0.00 0.98 479 
 Wilmington 0.54 0.56 0.61 208 
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Table S8: Accuracy of Cowardin Code and Resource Type Predictions. Accuracy takes test AJDs that 
WOTUS-ML classifies in a particular category (e.g., Cowardin code of ephemeral streams) and reports the 
share of these AJDs where the ACE engineers classifies the resource as in this category.  

 

  AJDs: share 
WOTUS-ML: 

score > 0.5 Accuracy N 
 

  (1) (2) (3) (4)  

A. Cowardin Codes          

1. Streams, ephemeral 0.14 0.18 0.66 2,265  

2. Streams, intermittent 0.07 0.03 0.11 1,128  

3. Streams, perennial and other 0.06 0.02 0.16 960  

4. Wetland, emergent 0.29 0.34 0.65 4,655  

5. Wetland, forested 0.16 0.19 0.61 2,477  

6. Wetland, other 0.07 0.01 0.05 1,071  

7. Estuaries 0.02 0.03 0.85 304  

8. Uplands 0.16 0.18 0.63 2,529  

9. Other 0.04 0.02 0.13 581  

Overall 1.00 1.00 0.52 15,970  

           

B. Resource Types          

1. Ephemeral 0.09 0.11 0.75 1,388  

2. Isolated 0.29 0.36 0.70 4,664  

3. Non-RPW that flows directly or indirectly into TNW 0.03 0.01 0.26 424  

4. Other non-jurisdictional 0.13 0.11 0.53 2,070  

5. Other jurisdictional 0.01 0.01 0.12 164  

6. RPW that flows directly or indirectly into TNW 0.11 0.06 0.20 1,698  

7. TNW 0.02 0.03 0.67 353  

8. Uplands 0.13 0.12 0.57 2,066  

9. Wetlands adjacent/abutting regulated waters 0.20 0.18 0.44 3,143  

Overall 1.00 1.00 0.54 15,970  
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Table S9: Regulated Stream Miles and Wetland Acres, by State. Total stream miles in (2) is from NHD stream and river flowline 
features. Total wetland acres in (3) is from NWI. Regulation rates in (4), (5), (6), and (7) are from WOTUS-ML, applied to the subset of four 
million prediction points that are within 10 meters of NHD or NWI features. The difference in column (6) is measured in stream miles, and 
in column (9) in wetland acres. Positive entries in (6) are associated with perennial streams, see SM section A.4.  
                     

      Stream miles regulated   Wetland acres regulated  

  Total 
Stream 
miles 

Total 
Wetland 

Acres 

    Difference  
NWPR - 
Rapanos 

      Difference  
NWPR - 
Rapanos 

 

  Rapanos 
(%) 

NWPR 
(%) 

  Rapanos 
(%) 

NWPR 
(%) 

 

State    

(1) (2) (3) (4) (5) (6)   (7) (8) (9)  

All National  3,154,480   119,825,268  — — -686,257   — — -34,659,988  

                     

Alabama       72,650  4,043,348 0.89 0.87 -1,443   0.86 0.63 -915,215  

Arizona     139,281  262,281 0.10 0.01 -12,562   0.33 0.06 -69,684  

Arkansas       78,496  2,558,428 0.89 0.67 -16,885   0.77 0.39 -978,770  

California     173,028  2,789,804 0.58 0.13 -78,689   0.68 0.15 -1,460,431  

Colorado       93,255  1,522,952 0.45 0.17 -26,541   0.43 0.18 -387,822  

Connecticut         5,215  304,750 1.00 0.99 -40   0.98 0.48 -152,838  

Delaware         2,234  290,940 1.00 0.95 -120   0.99 0.78 -63,450  

Florida       22,385  12,681,770 0.99 0.83 -3,636   0.88 0.24 -8,196,536  

Georgia       64,833  6,396,737 0.95 0.92 -1,791   0.91 0.47 -2,772,997  

Idaho       94,753  1,119,249 0.66 0.40 -24,510   0.68 0.35 -370,204  

Illinois       67,074  1,271,986 0.68 0.66 -1,746   0.54 0.42 -147,421  

Indiana       24,066  1,008,100 0.72 0.73 286   0.29 0.25 -37,603  

Iowa       67,717  1,014,174 0.82 0.71 -7,654   0.63 0.34 -297,352  

Kansas     118,236  1,349,856 0.87 0.42 -53,764   0.79 0.33 -620,966  

Kentucky       45,616  430,781 0.20 0.30 4,421   0.38 0.29 -35,465  

Louisiana       43,096  8,092,819 0.87 0.66 -8,932   0.80 0.55 -2,055,459  

Maine       24,974  2,569,961 0.99 0.72 -6,931   0.83 0.32 -1,317,269  

Maryland       10,263  863,198 0.98 0.92 -589   0.98 0.66 -278,264  

Massachusetts         7,273  775,106 0.99 0.92 -477   0.96 0.41 -425,813  

Michigan       47,861  7,712,081 0.55 0.29 -12,435   0.06 0.03 -214,072  

Minnesota       60,103  9,973,334 0.11 0.11 -40   0.01 0.01 -58,149  

Mississippi       77,386  4,534,181 0.65 0.55 -7,445   0.68 0.43 -1,092,420  

Missouri 95,347 1,388,966 0.82 0.63 -17,551   0.78 0.43 -481,217  

Montana     166,847  1,589,844 0.77 0.43 -55,447   0.46 0.24 -344,039  

Nebraska       72,506  549,755 0.61 0.39 -16,093   0.27 0.16 -58,510  

Nevada     143,616  1,003,174 0.23 0.06 -25,156   0.62 0.27 -353,148  

New Hampshire         9,374  384,706 0.87 0.54 -3,090   0.75 0.20 -214,531  

New Jersey         7,128  1,019,092 1.00 0.99 -81   0.99 0.83 -158,687  

New Mexico     109,260  383,873 0.14 0.02 -12,810   0.23 0.05 -68,753  

New York       48,756  2,651,158 0.95 0.81 -6,868   0.70 0.30 -1,079,833  

North Carolina       56,673  4,679,517 1.00 0.97 -1,535   0.99 0.63 -1,688,348  

North Dakota       59,514  2,442,160 0.96 0.78 -10,620   0.20 0.15 -122,294  

Ohio       54,736  715,219 0.62 0.68 2,796   0.38 0.26 -88,107  

Continued next page          
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      Stream miles regulated   Wetland acres regulated  

  
Total 

Stream 
miles 

Total 
Wetland 

Acres 

    
Difference  
NWPR - 
Rapanos 

      
Difference  
NWPR - 
Rapanos 

 

  Rapanos 
(%) 

NWPR 
(%) 

  Rapanos 
(%) 

NWPR 
(%) 

 

State    

(1) (2) (3) (4) (5) (6)   (7) (8) (9)  

Oklahoma       75,615  1,274,713 0.89 0.37 -39,658   0.89 0.47 -538,402  

Oregon     102,984  1,803,096 0.80 0.43 -37,975   0.88 0.37 -915,645  

Pennsylvania       51,477  588,835 0.91 0.77 -7,319   0.78 0.37 -239,928  

Rhode Island            978  86,061 1.00 0.94 -61   0.99 0.33 -56,368  

South Carolina       29,372  4,238,935 1.00 0.96 -1,019   0.98 0.55 -1,823,810  

South Dakota       96,965  3,529,693 0.83 0.57 -24,992   0.35 0.22 -482,699  

Tennessee       59,244  1,148,777 0.52 0.46 -3,425   0.56 0.47 -101,837  

Texas     176,194  5,551,483 0.67 0.21 -82,033   0.72 0.35 -2,051,586  

Utah       82,724  624,397 0.34 0.08 -21,435   0.41 0.14 -169,600  

Vermont         7,100  287,628 0.89 0.46 -3,048   0.60 0.15 -128,195  

Virginia       49,280  1,682,396 1.00 0.98 -715   0.99 0.86 -219,712  

Washington       68,964  1,297,395 0.98 0.60 -26,192   0.97 0.52 -588,074  

West Virginia       30,572  81,858 0.50 0.66 4,900   0.65 0.49 -13,097  

Wisconsin       53,370  7,610,528 0.59 0.47 -6,227   0.10 0.06 -251,016  

Wyoming     106,082  1,646,169 0.49 0.21 -29,080   0.45 0.16 -474,353  
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Table S10: Deregulation of Drinking Water Areas after NWPR. A 12-digit hydrologic unit 
code (HUC12) or subwatershed is the finest polygon delineation of watershed boundaries the US 
Geological Survey defines, corresponding to about 80,000 HUC12s. This table considers active 
2019 community water systems (CWS). Column (1) shows the number of people with a CWS 
served by a HUC12 with at least one point of a given classification deregulated between Rapanos 
and NWPR, divided by the number of people in a CWS served by a HUC12 with at least one 
point. Column (2) counts number of systems rather than number of people. Column (3) shows the 
share of points of a given classification that are deregulated in the sample of HUC12's that serve 
as a drinking water intake. With points as an analogue for water resource miles, 30% of NHD or 
NWI points deregulated in drinking water systems indicates a deregulation of 30% of NHD and 
NWI resources that serve as a drinking water source. Column (4) shows the share of points 
weighted by population. Including people or systems downstream of any HUC12 with at least one 
deregulated point does not change qualitative results. 

 

 

 

 

 

 

 

 

 

Deregulated share of Population PWSs 
Points serving 

PWSs 
Population 

Weighted Points 

 

  (1) (2) (3) (4)  

A. Same subwatershed (HUC12).           

Deregulated points 0.91 0.85 0.20 0.26  

           

Deregulated NHD or NWI points 0.80 0.69 0.30 0.32  

           

Deregulated NHD points 0.32 0.20 0.21 0.19  

           

Deregulated NWI points 0.80 0.68 0.30 0.32  

           

Deregulated NWI wetlands points 0.55 0.43 0.32 0.46  

 
 


