Energy Prices, Pass-Through, and Incidence in U.S. Manufacturing

Sharat Ganapati1 Joseph S. Shapiro2 Reed Walker2

1Georgetown University
2UC Berkeley and NBER

Any opinions and conclusions expressed herein are those of the authors and do not necessarily represent the views of the U.S. Census Bureau. All results have been reviewed to ensure that no confidential information is disclosed.
Overview

How do changes in energy costs affect manufacturing markups, marginal costs? Pass-Through? Incidence?

Motivation

- Energy important for manufacturing
- Greenhouse gas regulation, Middle East conflict, fracking, ...
- Regressive? Political economy for industry?

Data: administrative, confidential, plant-level.

Approach:

- Recover marginal costs using production functions and firm FOC
- Estimate pass-through
- Derive, use sufficient statistics formula for incidence.
Pass-through and incidence important, controversial

A U.S. cap-and-trade program for CO2 would have a “devastating impact to manufacturing” due in part to inability “to adjust the price of their goods and services quickly enough to match potentially steep energy cost increases”

– National Association of Manufactures (Streeter 2009)

“Americans will be hit repeatedly with higher prices as businesses pass higher costs onto consumers. . . . If a company had to absorb the costs, high energy costs would shrink profit margins.”

– Heritage Foundation (Loris and Jolevski 2014)
Motivation

Limited available evidence

“More research that carefully quantifies the effects of environmental policies on the prices of final goods is also needed. Existing research typically assumes that firms will have the ability to fully pass along the costs of environmental policies in the form of higher consumer prices. Under many circumstances, this assumption may not be applicable.”

– Bento (2013)

“Empirical studies on the extent to which the costs of environmental policies are passed forward into higher prices of consumer products would be extremely valuable; at present, empirical analyses typically assume 100% pass-through . . .”

– Sigman, Walls, and Williams (2006)
Results

1. Pass-through is incomplete.
 - Overall marginal cost pass-through rate $\approx 75\%$

2. Consumers bear lower share of welfare burden than standard methods imply.
 - Conventional methods assume complete pass-through, perfect competition
 - Our approach: consumers bear 20-70% less of the burden
Existing Research and Contributions

- Economy-wide energy price incidence
 - New here: Incomplete pass-through, imperfect competition

- Imperfect Competition and Environmental Externalities
 - New here: Multiple industries, flexible model

- Microeconometric pass-through
 (Doyle & Samphanththarak; Marion & Muehlegger 2011, Fabra & Reguant 2014, Miller et al. 2015)
 - New here: Multiple factors

- Pass-through of other costs
Existing Research and Contributions

New here? Analyze energy price incidence while accounting for:
- Imperfect competition
- Multiple industries
- Incomplete pass-through
- Factor substitution

Arbitrary market structure, demand system

Bottom Line: Methodology to measure incidence and pass-through flexibly in any industry with price data and cost-minimizing firms.
Road map for this talk

- Theory of Incidence
- Data
- Methodology and Results
- Conclude
Road map for this talk

- Theory of Incidence
- Data
- Methodology and Results
- Conclude
Theory of Incidence

Definitions

Incidence, \(I \equiv \frac{dCS}{dPS} \)
Pass-Through Rate, \(\rho \equiv \frac{dP}{d\tau} = \frac{1}{1+\frac{\epsilon_D}{\epsilon_S}} \)
Cost-Shift Rate, \(\gamma \equiv \frac{dMC}{d\tau} \)

Basic results

\[
I_{\text{Competitive}} = \frac{\rho}{\gamma - \rho} \quad I_{\text{Monopoly}} = \frac{\rho}{\gamma}
\]

Intuition [perfect competition]: envelope theorem

- Increasing \(\tau \) decreases CS by \(Q^* \) times change in consumer prices, \(\rho \)
- Increasing \(\tau \) decreases PS by \(Q^* \) change in producer margins, \(\gamma - \rho \)
Theory of Incidence

Incidence of Input Tax under Oligopoly

\[I^{\text{Oligopoly}} = \frac{\rho}{\gamma - (1 - L \times \epsilon_D)\rho} \]

Important notes:

- Parameters
 - Pass-through \(\rho \)
 - Cost-shift \(\gamma \)
 - Lerner Index \(L = (P - MC)/P \)
 - Demand elasticity \(\epsilon_D \equiv -[dQ/dP] [P/Q] \)
- Incidence of output, input taxes differ when \(\gamma \neq 1 \) (extends Weyl, Fabinger 2013)

Asymmetric Firms
Theory of Incidence

Incidence of Input Tax under Oligopoly

\[I^{\text{Oligopoly}} = \frac{\rho}{\gamma - (1 - L \times \epsilon_D) \rho} \]

Important notes:

- **Version we take to the data:**

\[I^{\text{Oligopoly}} = \frac{\rho_{MC}}{1 - (1 - L \times \epsilon_D) \rho_{MC}} \]
Road map for this talk

- Theory of Incidence
- Data
- Methodology and Results
- Conclude
Census of Manufacturers, 1972-1997
- Quinquennial plant-product-year level micro data from U.S. Census.
- Sample restrictions:
 - Homogeneous products (need unit prices)
 - Single-product plants
 - Drop imputed data (Unisys)
- Boxes, Bread, Cement, Concrete, Gas, Plywood

Manufacturing Energy Consumption Survey, ASM Fuel Trailers
- Plant-level inputs: coal, natural gas, oil, electricity

State Energy Data System
- National inputs (BTU) for electricity: coal, natural gas, oil.
Road map for this talk

- Theory of Incidence
- Data

Methodology and Results

1. Recovering marginal costs, markups
2. Effects of energy price shocks on marginal costs, markups, output prices
3. Pass-through, estimated using energy-induced changes in marginal cost
4. Characterize incidence using information on pass-through rate

Conclude
Some Intuition: How do we get markups from output elasticities of the production function?

\[Y = AK^\alpha L^\beta \]

- F.O.C. of firm relates output elasticity of a variable input (e.g. materials) to revenue share of input and markup (Hall 1988; De Loecker, Warzynski 2012)
- Under imperfect competition, input growth is associated with disproportional output/revenue growth
- Deviation between output elasticity of input and revenue growth identifies markup
Methodology - Markups

Markup Mechanics: Quick illustration/derivation

- General production function with hicks-neutral productivity:
 \[Q = F(V, K)\Omega \]

\(V\): variable input (materials); \(K\): dynamic input (capital, labor); \(\Omega\): TFP

- Firm minimizes cost of variable input(s), conditioning on dynamic inputs
- Lagrangian:
 \[L(V, K, \lambda) = \sum_{v=1}^{V} P^V V^V + rK + \lambda [Q - Q(V, K, \Omega)] \]
The marginal cost of production (for a given level of output) is λ

i.e. since $\frac{\partial L}{\partial Q} = \lambda$

FOC for variable input (e.g., materials):

$$\frac{\partial L}{\partial V^V} = P^V - \lambda \frac{\partial Q(.)}{\partial V^V} = 0$$

$$\frac{\partial Q(.) V^V}{\partial V^V Q} = \frac{1}{\lambda} \frac{P^V V^V}{Q}$$

$$\frac{\partial Q(.) V^V}{\partial V^V Q} = \frac{P}{\lambda} \times \frac{P^V V^V}{P Q}$$

Output elasticity Markup Input’s share of revenue

Markup identified using output elasticity [estimate] and revenue share [data]

If we observe prices in the data, we can calculate marginal costs from estimated markups: $MC = Price - Markup$
Recovering Markups: Summary

1. Firm’s FOC implies:
 - Markup equals output elasticity divided by revenue share
 - For a flexible input like materials

 \[
 \frac{P_{it}}{\lambda_{it}} = \left[\frac{\partial Q_{it} (\cdot)}{\partial V_{it}} \frac{V_{it}}{Q_{it}} \right] \left[\frac{P_{it} V_{it}}{P_{it} Q_{it}} \right]^{-1}
 \]

 - Intuition: Under imperfect competition, input growth is associated with disproportional revenue growth

2. Estimate output elasticity via production functions (Ackerberg et al. 2015)
 - Translog, gross-output production function with 3 factors (K, L, M)
 - Output is quantity (not revenue), avoiding output price bias

3. Compute marginal costs from price = marginal cost \times markup
Production Function Estimation and Output Elasticities

<table>
<thead>
<tr>
<th>Energy Cost Share (1)</th>
<th>Labor (2)</th>
<th>Materials (3)</th>
<th>Capital (4)</th>
<th>Returns to Scale (5)</th>
<th>Markup (6)</th>
<th>Observations (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boxes</td>
<td>0.02</td>
<td>0.04</td>
<td>0.95</td>
<td>0.04</td>
<td>1.00</td>
<td>1.47</td>
</tr>
<tr>
<td>Bread</td>
<td>0.02</td>
<td>0.28</td>
<td>0.63</td>
<td>0.09</td>
<td>1.13</td>
<td>1.20</td>
</tr>
<tr>
<td>Cement</td>
<td>0.32</td>
<td>0.91</td>
<td>1.08</td>
<td>0.19</td>
<td>2.46</td>
<td>2.30</td>
</tr>
<tr>
<td>Concrete</td>
<td>0.02</td>
<td>0.11</td>
<td>0.68</td>
<td>0.16</td>
<td>1.09</td>
<td>1.12</td>
</tr>
<tr>
<td>Gasoline</td>
<td>0.84</td>
<td>0.01</td>
<td>0.99</td>
<td>0.03</td>
<td>1.02</td>
<td>1.11</td>
</tr>
<tr>
<td>Plywood</td>
<td>0.02</td>
<td>0.02</td>
<td>0.95</td>
<td>0.11</td>
<td>0.92</td>
<td>1.48</td>
</tr>
<tr>
<td>Mean</td>
<td>0.02</td>
<td>0.10</td>
<td>0.070</td>
<td>0.14</td>
<td>1.09</td>
<td>1.15</td>
</tr>
</tbody>
</table>

Note: Translog, 3-factor (K, L, M), gross-output production function. Materials include electricity+fuels. This table shows mean values of energy cost shares, output elasticities, and markups. An observation is a plant-year.
Road map for this talk

- Theory of Incidence
- Data

Methodology and Results

1. Recovering markups, marginal costs
2. Effects of energy price shocks on marginal costs, markups, output prices
3. Pass-through, estimated using energy-induced changes in marginal cost
4. Characterize incidence using information on pass-through rate

Conclude
Effects of energy price shocks on marginal costs, markups, output prices

Fixed Effects Regression

\[Y_{it} = \beta_1 E_{it} + X'_{it} \gamma + \eta_i + \epsilon_{it} \]

- **\(Y_{it} \):** Plant-level Marginal Costs, Markups, or Prices
- **\(E_{it} \):** Energy Price
- **\(X_{it} \):** vector of controls (e.g. industry\(\times \)year, region\(\times \)year FE)
- **\(\eta_i \):** plant fixed effects

Econometric Issue: Energy prices \(E_{it} \) are endogenous
 - Likely correlated with local demand
Effects of energy price shocks on marginal costs, markups, output prices

Research Design #1: Regions use different fuel mixes to generate electricity
Different Regions Use Different Fuels to Generate Electricity
Effects of energy price shocks on marginal costs, markups, output prices

Research Design #1: Regions use different fuels to generate electricity

\[Y_{it} = \sum_{f \in \{\text{coal, gas, oil}\}} \left[\beta^f \left[E_{t,-s}^f \times \sigma_{s,t-k}^f \right] \right] + X_{it}' \gamma + \eta_i + \epsilon_{it} \]

- \(E_{t,-s}^f \) National (leave out mean) fuel prices
- \(\sigma_{s,t-k}^f \) State generation shares, lagged \(k \) years
Effects of energy price shocks on marginal costs, markups, output prices

Research Design #2: Industries use different fuels for production.

<table>
<thead>
<tr>
<th></th>
<th>Coal</th>
<th>Natural Gas</th>
<th>Fuel Oil</th>
<th>Electricity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boxes</td>
<td>0.000</td>
<td>0.007</td>
<td>0.002</td>
<td>0.009</td>
</tr>
<tr>
<td>Bread</td>
<td>0.000</td>
<td>0.007</td>
<td>0.002</td>
<td>0.011</td>
</tr>
<tr>
<td>Cement</td>
<td>0.130</td>
<td>0.049</td>
<td>0.010</td>
<td>0.134</td>
</tr>
<tr>
<td>Concrete</td>
<td>0.000</td>
<td>0.002</td>
<td>0.011</td>
<td>0.007</td>
</tr>
<tr>
<td>Gasoline</td>
<td>0.000</td>
<td>0.014</td>
<td>0.817</td>
<td>0.007</td>
</tr>
<tr>
<td>Plywood</td>
<td>0.000</td>
<td>0.005</td>
<td>0.002</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Source: ASM, MECS
Effects of energy price shocks on marginal costs, markups, output prices

Research Design #2: Industries use different fuels for production.

\[Y_{it} = \sum_{f \in \{coal, gas, oil, electricity\}} \left[\beta^f \left[E^f_{t-s} \times \sigma^f_{j,t-k} \right] \right] + X_{it}' \gamma + \eta_i + \epsilon_{it} \]

- \(E^f_{t-s} \) National (leave-out) mean fuel price for industrial consumers
- \(\sigma^f_{j,t-k} \) Fuel share for industry \(j \), lagged \(k \) years
Increases in Electricity Fuel Prices Increase Marginal Costs

Research Design #1

<table>
<thead>
<tr>
<th></th>
<th>Lag (t-0)</th>
<th>Lag (t-2)</th>
<th>Lag (t-5)</th>
<th>Lag (t-0)</th>
<th>Lag (t-2)</th>
<th>Lag (t-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Coal Price × Coal Share</td>
<td>0.092</td>
<td>0.156</td>
<td>-0.110</td>
<td>0.357</td>
<td>0.374</td>
<td>0.123</td>
</tr>
<tr>
<td></td>
<td>(0.387)</td>
<td>(0.363)</td>
<td>(0.311)</td>
<td>(0.244)</td>
<td>(0.293)</td>
<td>(0.255)</td>
</tr>
<tr>
<td>Gas Price × Gas Share</td>
<td>0.779*</td>
<td>0.788*</td>
<td>0.866*</td>
<td>0.235*</td>
<td>0.225*</td>
<td>0.291*</td>
</tr>
<tr>
<td></td>
<td>(0.175)</td>
<td>(0.140)</td>
<td>(0.191)</td>
<td>(0.086)</td>
<td>(0.084)</td>
<td>(0.061)</td>
</tr>
<tr>
<td>Oil Price × Oil Share</td>
<td>0.136</td>
<td>0.229</td>
<td>0.013</td>
<td>-0.070</td>
<td>0.047</td>
<td>-0.029</td>
</tr>
<tr>
<td></td>
<td>(0.341)</td>
<td>(0.290)</td>
<td>(0.207)</td>
<td>(0.121)</td>
<td>(0.118)</td>
<td>(0.139)</td>
</tr>
</tbody>
</table>

Plant FE | X | X | X | X | X | X |
Year FE | X | X | X | X | X | X |
State Trends | X | X | X | X | X | X |
Region-Year FE | X | X | X | X | X | X |
Product-Year FE | X | X | X | X | X | X |

Notes: 6 regressions, 1 per column. Observation = plant-year. Energy data from EIA-SEDS, state-level. Marginal costs estimated using 3 factor (K, L, M), translog production function. S.E. clustered by state.

Interpretation [Column 4-6, Gas]: 1% increase in gas price ⇒ 0.291% increase in marginal costs for state with 100% gas generation share.

- Average gas generation share is 25% ⇒ 0.07% increase in marginal costs
Increases in Electricity Fuel Prices Increase Marginal Costs

Research Design #2

<table>
<thead>
<tr>
<th>(1) Lag (t-0)</th>
<th>(2) Lag (t-2)</th>
<th>(3) Lag (t-0)</th>
<th>(4) Lag (t-2)</th>
<th>(5) Lag (t-0)</th>
<th>(6) Lag (t-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal Costs</td>
<td>Unit Prices</td>
<td>Markups</td>
<td>Marginal Costs</td>
<td>Unit Prices</td>
<td>Markups</td>
</tr>
<tr>
<td>Coal Price × Coal Share</td>
<td>38.69***</td>
<td>66.79***</td>
<td>13.84***</td>
<td>31.06***</td>
<td>-24.85***</td>
</tr>
<tr>
<td></td>
<td>(7.95)</td>
<td>(8.97)</td>
<td>(4.67)</td>
<td>(5.67)</td>
<td>(4.83)</td>
</tr>
<tr>
<td>Gas Price × Gas Share</td>
<td>136.44***</td>
<td>97.41***</td>
<td>75.80***</td>
<td>53.09**</td>
<td>-60.64**</td>
</tr>
<tr>
<td></td>
<td>(29.32)</td>
<td>(40.44)</td>
<td>(22.71)</td>
<td>(23.65)</td>
<td>(25.59)</td>
</tr>
<tr>
<td>Oil Price × Oil Share</td>
<td>354.57***</td>
<td>419.99***</td>
<td>181.91***</td>
<td>247.12***</td>
<td>-172.66***</td>
</tr>
<tr>
<td></td>
<td>(22.63)</td>
<td>(83.01)</td>
<td>(20.05)</td>
<td>(52.57)</td>
<td>(17.15)</td>
</tr>
<tr>
<td>Electricity Price × Share</td>
<td>-70.59**</td>
<td>112.69</td>
<td>-12.18</td>
<td>78.83</td>
<td>-58.41**</td>
</tr>
<tr>
<td></td>
<td>(32.25)</td>
<td>(116.56)</td>
<td>(19.10)</td>
<td>(68.15)</td>
<td>(23.64)</td>
</tr>
<tr>
<td>Plant FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>State Trends</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Region-Year FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Road map for this talk

- Theory of Incidence
- Data

Methodology and Results

1. Recovering markups, marginal costs
2. Effects of energy price shocks on marginal costs, markups, output prices
3. Pass-through, estimated using energy-induced changes in marginal cost
4. Characterize incidence using information on pass-through rate

- Conclude
To What Extent are Plant-level Changes in MC Passed Through to Price?

Standard Pass-Through Regression: Price against Marginal Cost

\[p_{it} = \rho_{MC,\epsilon}mc_{it} + X_{it}'\gamma + \eta_i + \epsilon_{it} \]

Instrument \(mc_{it} \) with either of two research designs

- \(\rho_{MC,\epsilon} \): marginal cost pass-through elasticity
- Why instrument? Measurement error; Policy-relevant LATE
Pass-Through Rate of Marginal Costs into Unit Prices: OLS

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal Costs</td>
<td>0.598***</td>
<td>0.680***</td>
<td>0.598***</td>
<td>0.681***</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.033)</td>
<td>(0.018)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>Plant FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>State Trends</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Year FE</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product-Year FE</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Region-Year FE</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table presents regression coefficients from 4 separate regressions, one per column. An observation is a plant-year. The dependent variable is the plant-level unit-price, and the independent variable is plant-level marginal cost. Standard errors are in parentheses and are clustered by State. Regressions are weighted by Census sampling weights. ***,**,* denotes statistical significance at the 1, 5, and 10 percent levels, respectively. See text for details. Source: Census of Manufacturers, EIA-SEDS.
Table – Pass-Through Rate of Marginal Costs into Unit Prices: Instrumental Variables

<table>
<thead>
<tr>
<th>Marginal Costs</th>
<th>(1) Lag (t-0)</th>
<th>(2) Lag (t-2)</th>
<th>(3) Lag (t-5)</th>
<th>(4) Lag (t-0)</th>
<th>(5) Lag (t-2)</th>
<th>(6) Lag (t-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.628***</td>
<td>0.623***</td>
<td>0.625***</td>
<td>0.660***</td>
<td>0.654***</td>
<td>0.715***</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.031)</td>
<td>(0.029)</td>
<td>(0.099)</td>
<td>(0.088)</td>
<td>(0.086)</td>
</tr>
<tr>
<td>N</td>
<td>5892</td>
<td>5892</td>
<td>5892</td>
<td>5892</td>
<td>5892</td>
<td>5892</td>
</tr>
</tbody>
</table>

Panel A: Electricity Shift-Share Instrument

<table>
<thead>
<tr>
<th>First Stage F-Statistic</th>
<th>9.53</th>
<th>14.33</th>
<th>6.99</th>
<th>8.89</th>
<th>3.95</th>
<th>12.09</th>
</tr>
</thead>
</table>

Plant FE	X	X	X	X	X	X
Year FE	X	X	X			
State Trends	X	X	X			
Product-Year FE	X	X				
Region-Year FE						

Notes: 6 regressions, 1 per column. Observation = plant-year. Energy data from EIA-SEDS, state-level.

Markups estimated using 3 factor (K, L, M), translog production function. Standard errors clustered by state.
Table – Pass-Through Rate of Marginal Costs into Unit Prices: Instrumental Variables

<table>
<thead>
<tr>
<th></th>
<th>(1) Lag (t-0)</th>
<th>(2) Lag (t-2)</th>
<th>(3) Lag (t-0)</th>
<th>(4) Lag (t-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal Costs</td>
<td>0.511***</td>
<td>0.514***</td>
<td>0.505***</td>
<td>0.508***</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.014)</td>
<td>(0.012)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>N</td>
<td>5683</td>
<td>5683</td>
<td>5683</td>
<td>5683</td>
</tr>
<tr>
<td>First Stage F-Statistic</td>
<td>137.48</td>
<td>78.68</td>
<td>120.74</td>
<td>66.18</td>
</tr>
<tr>
<td>Plant FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Year FE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State Trends</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Product-Year FE</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Region-Year FE</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Panel B: Fuel Shift-Share Instrument

Table – Pass-Through Rate of Marginal Costs into Unit Prices by Product: Instrumental Variables

<table>
<thead>
<tr>
<th></th>
<th>(1) Boxes</th>
<th>(2) Bread</th>
<th>(3) Cement</th>
<th>(4) Concrete</th>
<th>(5) Gasoline</th>
<th>(6) Plywood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal Costs</td>
<td>0.963***</td>
<td>0.681***</td>
<td>0.775***</td>
<td>0.711***</td>
<td>0.327**</td>
<td>0.692***</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.150)</td>
<td>(0.087)</td>
<td>(0.082)</td>
<td>(0.143)</td>
<td>(0.082)</td>
</tr>
<tr>
<td>Pass-Through Rate</td>
<td>1.42</td>
<td>0.82</td>
<td>1.78</td>
<td>0.80</td>
<td>0.36</td>
<td>1.02</td>
</tr>
<tr>
<td>First Stage F-statistic</td>
<td>23.41</td>
<td>1.67</td>
<td>49.29</td>
<td>23.36</td>
<td>2.43</td>
<td>38.55</td>
</tr>
</tbody>
</table>

Panel A: Baseline - Electricity Price Instrument

Panel B: Region-Year FE - Electricity Price Instrument

<table>
<thead>
<tr>
<th></th>
<th>(1) Boxes</th>
<th>(2) Bread</th>
<th>(3) Cement</th>
<th>(4) Concrete</th>
<th>(5) Gasoline</th>
<th>(6) Plywood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal Costs</td>
<td>0.992***</td>
<td>0.458***</td>
<td>0.801***</td>
<td>0.624***</td>
<td>0.242**</td>
<td>0.758***</td>
</tr>
<tr>
<td></td>
<td>(0.057)</td>
<td>(0.172)</td>
<td>(0.100)</td>
<td>(0.066)</td>
<td>(0.111)</td>
<td>(0.068)</td>
</tr>
<tr>
<td>Pass-Through Rate</td>
<td>1.46</td>
<td>0.55</td>
<td>1.84</td>
<td>0.70</td>
<td>0.27</td>
<td>1.12</td>
</tr>
<tr>
<td>First Stage F-statistic</td>
<td>2.04</td>
<td>3.39</td>
<td>22.90</td>
<td>13.5</td>
<td>4.22</td>
<td>30.10</td>
</tr>
</tbody>
</table>

Notes: 12 regressions; one per column in each of the two panels. Each column represents a separate sample, where the sample is indicated in the column headings. Observation = plant-year. Dependent variable = plant-level unit-price. Independent variable = plant-level marginal cost. Marginal cost instrumented by national fuel prices for electricity generation × 5-year lagged electricity generation shares.
Road map for this talk

- Theory of Incidence
- Data

Methodology and Results

1. Recovering markups, marginal costs
2. Effects of energy price shocks on marginal costs, markups, output prices
3. Pass-through, estimated using energy-induced changes in marginal cost
4. Characterize incidence using information on pass-through rate

- Conclude
Incidence of Input Taxes under Imperfect Competition

\[I^{Oligopoly} = \frac{\rho}{\gamma - (1 - L \times \epsilon_D)\rho} \]

\[= \frac{\rho_{MC}}{1 - (1 - L \times \epsilon_D)\rho_{MC}} \]

Parameters:
- \(\rho_{MC} \) Marginal cost pass-through (Estimated above)
- \(L = (P - MC)/MC \) Lerner Index (Estimated above)
- \(\epsilon_D \) Demand elasticity (Methods from Foster, Haltiwanger, Syverson (2008))
Estimating Demand

Foster, Haltiwanger, Syverson (2008) estimate log-linear demand system

- Regress quantity on price, instrumenting price with a measure of TFP-Q
- Control for year FE + per capita county income

IV: TFP-Q

- TFP-Q a measure of producer technologies (physical production costs) ⇒ strongly predict prices
- Unlikely to be correlated with short-run, plant-specific demand shocks

Physical Productivity Measure TFP-Q

- Productivity index, constant returns to scale with industry cost shares as output elasticities
- Deflate dollar-based inputs using NBER input price deflators (industry-year)
- Labor, capital, materials, and energy inputs
Rewrite Incidence as \(\frac{dCS/d\tau}{dCS/d\tau + dPS/d\tau} \)

- How much do consumers bear as % of loss [gain?] to producers + consumers?

Table – Incidence: Change in Consumer Surplus as Share of Change in Total Surplus

<table>
<thead>
<tr>
<th></th>
<th>(1) Boxes</th>
<th>(2) Bread</th>
<th>(3) Cement</th>
<th>(4) Concrete</th>
<th>(5) Gasoline</th>
<th>(6) Plywood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Incidence Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC Pass-Through ((\rho_{MC}^F))</td>
<td>1.49</td>
<td>0.65</td>
<td>1.42</td>
<td>0.50</td>
<td>0.56</td>
<td>1.15</td>
</tr>
<tr>
<td>Demand Elasticity ((\epsilon_D))</td>
<td>3.24</td>
<td>2.42</td>
<td>1.82</td>
<td>5.53</td>
<td>8.70</td>
<td>1.39</td>
</tr>
<tr>
<td>Mean Lerner Index ((L))</td>
<td>0.33</td>
<td>0.18</td>
<td>0.57</td>
<td>0.13</td>
<td>0.12</td>
<td>0.41</td>
</tr>
<tr>
<td>Panel B: Consumer share of burden (by market structure)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligopoly</td>
<td>0.63 (0.03)</td>
<td>0.43 (0.17)</td>
<td>0.46 (0.09)</td>
<td>0.58 (0.07)</td>
<td>0.31 (0.22)</td>
<td>0.64 (0.18)</td>
</tr>
</tbody>
</table>
Bounding Incidence Between Perfect Competition and Monopoly

How to relax production function assumptions?

Bounding Exercise:

- Incidence from perfect competition and monopoly as bounds

\[
\text{Incidence_{Competitive}} = \frac{\rho}{\gamma - \rho} \quad \text{Incidence_{Monopoly}} = \frac{\rho}{\gamma}
\]

- Only requires knowing pass-through rate and cost-shift rate
 - Pass-through rate we can estimate directly
 - Cost shift rate can be parameterized without having to estimate markups, marginal costs, and/or production functions
Bounding Incidence Between Perfect Competition and Monopoly

Bounding using marginal cost pass-through.

\[I_{\text{Competitive}} = \frac{\rho_{MC}}{1 - \rho_{MC}} \]

\[I_{\text{Monopoly}} = \rho_{MC} \]

Table – Incidence: Change in Consumer Surplus as Share of Change in Total Surplus (Cont.)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Boxes</td>
<td>Bread</td>
<td>Cement</td>
<td>Concrete</td>
<td>Gasoline</td>
<td>Plywood</td>
</tr>
<tr>
<td>Panel A: Incidence Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC Pass-Through (ρ_{MC}^F)</td>
<td>1.49</td>
<td>0.65</td>
<td>1.42</td>
<td>0.50</td>
<td>0.56</td>
<td>1.15</td>
</tr>
<tr>
<td>Demand Elasticity (ϵ_D)</td>
<td>3.24</td>
<td>2.42</td>
<td>1.82</td>
<td>5.53</td>
<td>8.70</td>
<td>1.39</td>
</tr>
<tr>
<td>Mean Lerner Index (L)</td>
<td>0.33</td>
<td>0.18</td>
<td>0.57</td>
<td>0.13</td>
<td>0.12</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Panel B: Consumer share of burden (by market structure)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monopoly</td>
<td>Perfect Competition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.59</td>
<td>(0.02)</td>
<td>1.44</td>
<td>(0.12)</td>
<td>0.59</td>
<td>(0.12)</td>
</tr>
</tbody>
</table>
Wrapping Up

Methodology to estimate incidence of cost shocks

Findings: Standard methods overstate share of burden for consumers.
 - Reasons: incomplete pass-through, perfect competition

Ongoing Work: Optimal Pigouvian tax in concentrated industries.